On p-variation of bifractional Brownian motion

被引:0
作者
Wen-sheng Wang
机构
[1] Hangzhou Normal University,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2011年 / 26卷
关键词
Bifractional Brownian motion; variation; strongly consistent; fractal nature; 60G15; 60G17; 60F10; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study p-variation of bifractional Brownian motion. As an application, we introduce a class of estimators of the parameters of a bifractional Brownian motion and prove that both of them are strongly consistent; as another application, we investigate fractal nature related to the box dimension of the graph of bifractional Brownian motion.
引用
收藏
页码:127 / 141
页数:14
相关论文
共 26 条
  • [1] Adler R. J.(1993)Multidimensional bifractional Brownian motion: Itô and Tanaka’s formulas Uniform quadratic variation for Gaussian processes 48 191-209
  • [2] Pyke R.(1992)On quadratic variation of processes with Gaussian increments Fernique type inequalities and moduli of continuity for l2-valued Ornstein-Uhlenbeck processes 28 479-517
  • [3] Csáki E.(2007)An example of infinite dimensional quasi-helix, Contemporary Mathematics Stoch Dyn 3 365-388
  • [4] Csörgő M.(1975)Gaussian measures in Bp Ann Probab 3 716-721
  • [5] Shao Q. M.(2003)Hélices et quasi-hélices Amer Math Soc 336 195-201
  • [6] Es-Sebaiy K.(1983)Oscillation of sample functions in stationary Gaussian processes Ann Probab 11 46-57
  • [7] Tudor C. A.(1981)Semi-stable stochastic processes Adv Math 7B 417-433
  • [8] Giné E.(1969)A decomposition of the bifractional Brownian motion and some applications Osaka J Math 6 1-12
  • [9] Klein R.(1962)Le mouvement Brownien plan Trans Amer Math Soc 104 64-78
  • [10] Houdré C.(2009)p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments Statist Probab Lett 79 619-624