A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
收藏
相关论文
共 50 条
  • [41] On the distance spectral radius of trees
    Nath, Milan
    Paul, Somnath
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07) : 847 - 855
  • [42] Distance spectral radius and fractional matching in t-connected graphs
    Hu, Yanling
    Lin, Huiqiu
    Zhang, Yuke
    Zhang, Zhiguo
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (18) : 3128 - 3141
  • [43] Maximal distance spectral radius of 4-chromatic planar graphs
    Erey, Aysel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 618 : 183 - 202
  • [44] Distance spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 564 - 578
  • [45] On distance spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Li, Yaduan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03) : 497 - 513
  • [46] GRAPH TRANSFORMATION AND DISTANCE SPECTRAL RADIUS
    Nath, Milan
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (03)
  • [47] Maximal distance spectral radius of trees
    Bose, S. S.
    Nath, M.
    Sarma, D.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [48] The effect of a graft transformation on distance spectral radius
    Xing, Rundan
    Zhou, Bo
    Dong, Fengming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 261 - 275
  • [49] The distance spectral radius of trees
    Lin, Hongying
    Zhou, Bo
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (02) : 370 - 390
  • [50] EXTREMAL PROPERTIES OF THE DISTANCE SPECTRAL RADIUS OF HYPERGRAPHS
    Wang, Yanna
    Zhou, Bo
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 411 - 429