A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
收藏
相关论文
共 50 条