We prove that a 4-connected K4,4-minor free graph on n vertices has at most 4n−8 edges and we use this result to show that every K4,4-minor free graph has vertex-arboricity at most 4. This improves the case (n,m)=(7,3) of the following conjecture of Woodall: the vertex set of a graph without a Kn-minor and without a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}-minor can be partitioned in n−m+1 subgraphs without a Km-minor and without a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}-minor.