Vertex Partitions of K4,4-Minor Free Graphs

被引:0
作者
Leif K. Jørgensen
机构
[1] Department of Mathematics,
[2] Aalborg University,undefined
[3] Fr. Bajers Vej 7E,undefined
[4] 9220 Aalborg ∅,undefined
[5] Denmark. e-mail: leif@math.auc.dk,undefined
来源
Graphs and Combinatorics | 2001年 / 17卷
关键词
Free Graph; Vertex Partition;
D O I
暂无
中图分类号
学科分类号
摘要
 We prove that a 4-connected K4,4-minor free graph on n vertices has at most 4n−8 edges and we use this result to show that every K4,4-minor free graph has vertex-arboricity at most 4. This improves the case (n,m)=(7,3) of the following conjecture of Woodall: the vertex set of a graph without a Kn-minor and without a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-minor can be partitioned in n−m+1 subgraphs without a Km-minor and without a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-minor.
引用
收藏
页码:265 / 274
页数:9
相关论文
empty
未找到相关数据