On the algebraic structure of central molecular chirality

被引:0
作者
Francisco M. Fernández
机构
[1] INIFTA (UNLP,División Química Teórica
[2] CCT La Plata-CONICET),undefined
来源
Journal of Mathematical Chemistry | 2016年 / 54卷
关键词
Chirality; Permutation matrices; Group theory ; Homomorphism;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a group of 24 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} permutation matrices that proved suitable for the study of chirality is a reducible representation of the group Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{d}$$\end{document}. Consequently, all the mathematical properties of the former matrices can be easily inferred from the table of characters of the latter group. We also show that the group of 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} permutation matrices is isomorphic to a group of 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} ones that form an irreducible representation of the elements of the group Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{d}$$\end{document}. We discuss the one-to-one correspondence between the two sets of matrices. A similar analysis can be carried out with the point group O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document}.
引用
收藏
页码:552 / 558
页数:6
相关论文
共 12 条
[1]  
Capozziello S(2003)undefined Chirality 15 227-undefined
[2]  
Lattanzi A(2003)undefined Chirality 15 466-undefined
[3]  
Capozziello S(2004)undefined Chirality 16 162-undefined
[4]  
Lattanzi A(2005)undefined Adv. Quantum Chem. 49 227-undefined
[5]  
Capozziello S(2005)undefined Int. J. Quantum Chem. 104 885-undefined
[6]  
Lattanzi A(2006)undefined Chirality 18 462-undefined
[7]  
Capozziello S(undefined)undefined undefined undefined undefined-undefined
[8]  
Lattanzi A(undefined)undefined undefined undefined undefined-undefined
[9]  
Capozziello S(undefined)undefined undefined undefined undefined-undefined
[10]  
Lattanzi A(undefined)undefined undefined undefined undefined-undefined