Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study

被引:0
|
作者
Sergio Hernández-García
Alfredo Cuesta-Infante
José Ángel Moreno-SanSegundo
Antonio S. Montemayor
机构
[1] Universidad Rey Juan Carlos,Escuela Técnica Superior de Ingeniería Informática
[2] Universidad Rey Juan Carlos,Escuela Superior de Ciencias Experimentales y Tecnología
来源
Neural Computing and Applications | 2023年 / 35卷
关键词
Deep reinforcement learning; Proximal policy optimization; Wastewater disinfection; Photo-fenton process; 68T07; 68T20; 68T42; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical optimization solves problems that are analytically intractable at the cost of arriving at a sufficiently good but rarely optimal solution. To maximize the result, optimization algorithms are run with the guidance and supervision of a human, usually an expert in the problem. Recent advances in deep reinforcement learning motivate interest in an artificial agent capable of learning to do the expert’s task. Specifically, we present a proximal policy optimization agent that learns to optimize in a real case study such as the modeling of the photo-fenton disinfection process, which involves a number of parameters that have to be adjusted to minimize the error of the model with respect to the experimental data collected in several trials. The expert spends an average of 4 h to find a suitable set of parameters. On the other hand, the agent we present does not require a human expert to guide or validate the optimization procedure and achieves similar results in 2.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.5\times$$\end{document} less time.
引用
收藏
页码:1379 / 1394
页数:15
相关论文
共 44 条
  • [1] Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study
    Hernandez-Garcia, Sergio
    Cuesta-Infante, Alfredo
    Angel Moreno-SanSegundo, Jose
    Montemayor, Antonio S.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02) : 1379 - 1394
  • [2] Efficient wastewater disinfection through FeOOH-mediated photo-Fenton reaction: A review
    Wang, Chen
    Shi, Peng
    Wang, Zhaobo
    Guo, Rui
    You, Junhua
    Zhang, Hangzhou
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [3] Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid complex as catalyst at neutral pH
    Fiorentino, Antonino
    Cucciniello, Raffaele
    Di Cesare, Andrea
    Fontaneto, Diego
    Prete, Prisco
    Rizzo, Luigi
    Corno, Gianluca
    Proto, Antonio
    WATER RESEARCH, 2018, 146 : 206 - 215
  • [4] Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal
    Alibabaei, Khadijeh
    Gaspar, Pedro D.
    Assuncao, Eduardo
    Alirezazadeh, Saeid
    Lima, Tania M.
    AGRICULTURAL WATER MANAGEMENT, 2022, 263
  • [5] Treatment of oil refinery wastewater by photo-Fenton process using Box–Behnken design method: kinetic study and energy consumption
    M. Mohadesi
    A. Shokri
    International Journal of Environmental Science and Technology, 2019, 16 : 7349 - 7356
  • [6] A synchronous deep reinforcement learning model for automated multi-stock trading
    AbdelKawy, Rasha
    Abdelmoez, Walid M.
    Shoukry, Amin
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (01) : 83 - 97
  • [7] A synchronous deep reinforcement learning model for automated multi-stock trading
    Rasha AbdelKawy
    Walid M. Abdelmoez
    Amin Shoukry
    Progress in Artificial Intelligence, 2021, 10 : 83 - 97
  • [8] Treatment of oil refinery wastewater by photo-Fenton process using Box-Behnken design method: kinetic study and energy consumption
    Mohadesi, M.
    Shokri, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (11) : 7349 - 7356
  • [9] Parameters tuning of multi-model database based on deep reinforcement learning
    Feng Ye
    Yang Li
    Xiwen Wang
    Nadia Nedjah
    Peng Zhang
    Hong Shi
    Journal of Intelligent Information Systems, 2023, 61 : 167 - 190
  • [10] Parameters tuning of multi-model database based on deep reinforcement learning
    Ye, Feng
    Li, Yang
    Wang, Xiwen
    Nedjah, Nadia
    Zhang, Peng
    Shi, Hong
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 61 (01) : 167 - 190