Exponential Distribution for the Occurrence of Rare Patterns in Gibbsian Random Fields

被引:0
作者
M. Abadi
J.-R. Chazottes
F. Redig
E. Verbitskiy
机构
[1] IME-USP,CPhT
[2] CNRS-Ecole Polytechnique,Faculteit Wiskunde en Informatica
[3] Technische Universiteit Eindhoven,undefined
[4] Philips Research Laboratories,undefined
来源
Communications in Mathematical Physics | 2004年 / 246卷
关键词
Limit Theorem; Exponential Distribution; Random Field; Central Limit; Central Limit Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the distribution of the occurrence of rare patterns in sufficiently mixing Gibbs random fields on the lattice ℤd, d≥2. A typical example is the high temperature Ising model. This distribution is shown to converge to an exponential law as the size of the pattern diverges. Our analysis not only provides this convergence but also establishes a precise estimate of the distance between the exponential law and the distribution of the occurrence of finite patterns. A similar result holds for the repetition of a rare pattern. We apply these results to the fluctuation properties of occurrence and repetition of patterns: We prove a central limit theorem and a large deviation principle.
引用
收藏
页码:269 / 294
页数:25
相关论文
共 18 条
[1]  
Abadi J.-R.(1)Dimensions and waiting time for Gibbs measures Related Fields 7 97-320
[2]  
Asselah R.L.(2)Completely analytical interactions: constructive description Stochastic Process. Appl. 71 259-1014
[3]  
Asselah S.B.(6)undefined Ann. Inst. H. Poincaré Probab. Statist. 33 727-undefined
[4]  
Bryc undefined(1993)undefined Statist. & Probab. Lett. 18 253-undefined
[5]  
Chazottes undefined(2000)undefined J. Stat. Phys. 98 305-undefined
[6]  
Chi undefined(1)undefined IEEE Trans. Inform. Theory 47 338-undefined
[7]  
Collet undefined(1999)undefined Nonlinearity 12 1225-undefined
[8]  
Comets undefined(11)undefined CRAS, t. 303 511-undefined
[9]  
Dembo undefined(6)undefined IEEE Trans. Inf. Theory 48 1590-undefined
[10]  
Dobrushin undefined(1987)undefined J. Stat. Phys. 46 983-undefined