On the Prüfer rank of mutually permutable products of abelian groups

被引:0
作者
A. Ballester-Bolinches
John Cossey
H. Meng
M. C. Pedraza-Aguilera
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Australian National University,Department of Mathematics, Mathematical Sciences Institute
[3] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2019年 / 198卷
关键词
Abelian group; Soluble group; Polycyclic group; Rank; Factorisations; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
A group G has finite (or Prüfer or special) rank if every finitely generated subgroup of G can be generated by r elements and r is the least integer with this property. The aim of this paper is to prove the following result: assume that G=AB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = AB$$\end{document} is a group which is the mutually permutable product of the abelian subgroups A and B of Prüfer ranks r and s, respectively. If G is locally finite, then the Prüfer rank of G is at most r+s+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+ s+ 3$$\end{document}. If G is an arbitrary group, then the Prüfer rank of G is at most r+s+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+ s+ 4$$\end{document}.
引用
收藏
页码:811 / 819
页数:8
相关论文
共 16 条
[1]  
Amberg B(1999)On the rank of a product of two finite Commun. Algebra 27 3895-3907
[2]  
Kazarin LS(1996)-groups and nilpotent Commun. Algebra 24 2421-2445
[3]  
Amberg B(1976)-algebras Math. Z. 151 249-257
[4]  
Sysak YP(1999)Locally soluble products of two subgroups with finite rank J. Group Theory 2 377-392
[5]  
Baumslag G(2001)Constructable solvable groups Quad. Mat 8 45-62
[6]  
Bieri R(1968)Totally permutable torsion subgroups Math. Z. 107 335-356
[7]  
Beidleman J(2008)A survey of mutually and totally permutable products in infinite groups, topics in infinite groups Isr. J. Math. 166 313-347
[8]  
Heineken H(1981)Power automorphisms of a group Arch. Math. 37 7-17
[9]  
Beidleman J(1989)Finite 2-groups with exactly one nonmetacyclic maximal subgroup Arch. Math. 53 313-317
[10]  
Heineken H(1997)Bounding the number of generators of a polycyclic group Bull. Lond. Math. Soc. 29 389-394