Applications of Nijenhuis Geometry V: Geodesic Equivalence and Finite-Dimensional Reductions of Integrable Quasilinear Systems

被引:0
作者
Alexey V. Bolsinov
Andrey Yu. Konyaev
Vladimir S. Matveev
机构
[1] Loughborough University,School of Mathematics
[2] Moscow State University,Faculty of Mechanics and Mathematics
[3] and Moscow Center for Fundamental and Applied Mathematics,Institut für Mathematik
[4] Friedrich Schiller Universität Jena,undefined
[5] La Trobe University,undefined
来源
Journal of Nonlinear Science | 2024年 / 34卷
关键词
Nijenhuis operators; Geodesically equivalent metrics; Symmetries; Killing tensors; Integrals of motion; Systems of hydrodynamic type; Integrable systems; Finite-dimensional reduction; 37K05; 37K06; 37K10; 37K25; 37K50; 53B10; 53A20; 53B20; 53B30; 53B50; 53B99; 53D17;
D O I
暂无
中图分类号
学科分类号
摘要
We describe all metrics geodesically compatible with a gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{gl}$$\end{document}-regular Nijenhuis operator L. The set of such metrics is large enough so that a generic local curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is a geodesic for a suitable metric g from this set. Next, we show that a certain evolutionary PDE system of hydrodynamic type constructed from L preserves the property of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} to be a g-geodesic. This implies that every metric g geodesically compatible with L gives us a finite-dimensional reduction of this PDE system. We show that its restriction onto the set of g-geodesics is naturally equivalent to the Poisson action of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} on the cotangent bundle generated by the integrals coming from geodesic compatibility.
引用
收藏
相关论文
共 39 条
[1]  
Antonowicz M(1987)Integrable stationary flows: Miura maps and bi-Hamiltonian structures Phys. Lett. A 124 143-150
[2]  
Fordy AP(2003)Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems J. Geom. Phys. 47 21-42
[3]  
Wojciechowski S(2009)A coordinate-free construction of conservation laws and reciprocal transformations for a class of integrable hydrodynamic-type systems Rep. Math. Phys. 64 341-354
[4]  
Blaszak M(2003)Geometrical interpretation of Benenti systems J. Geom. Phys. 44 489-506
[5]  
Ma W-X(2011)Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics Trans. Am. Math. Soc. 363 4081-4107
[6]  
Blaszak M(2015)Local normal forms for geodesically equivalent pseudo-Riemannian metrics Trans. Am. Math. Soc. 367 6719-6749
[7]  
Sergyeyev A(2018)Open problems, questions, and challenges in finite-dimensional integrable systems Philos. Trans. R. Soc. A 376 20170430-1540
[8]  
Bolsinov AV(2021)Local normal forms for c-projectively equivalent metrics and proof of the Yano–Obata conjecture in arbitrary signature. Proof of the projective Lichnerowicz conjecture for Lorentzian metrics Annales de l’ENS 54 1465-305
[9]  
Matveev VS(1934)Separable systems of Stäckel Ann. Math. 35 284-118
[10]  
Bolsinov AV(1991)Integration of weakly nonlinear hydrodynamic systems in Riemann invariants Phys. Lett. A 158 112-182