High-temperature creep of magnetite and ilmenite single crystals

被引:0
作者
J. L. Till
E. Rybacki
机构
[1] Telegrafenberg,Deutsches GeoForschungsZentrum Helmholz Zentrum Potsdam
[2] University of Iceland,Institute of Earth Sciences
[3] University of Minnesota,Institute for Rock Magnetism
来源
Physics and Chemistry of Minerals | 2020年 / 47卷
关键词
Creep; Mineral physics; Fe-oxides; Experimental deformation;
D O I
暂无
中图分类号
学科分类号
摘要
We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,^{\circ }$$\end{document}C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10-9.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-9.4}$$\end{document} to 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-4}$$\end{document} atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as fO2-0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{-0.7}$$\end{document} and fO20.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{0.4}$$\end{document} at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep.
引用
收藏
相关论文
共 163 条
  • [21] Bach W(1960)The system Fe–Si–O: oxygen buffer calibrations to 1500 K J Am Ceram Soc 43 473-692
  • [22] Bideau D(2012)Oxygen mobility in polycrystalline NiCr Int J Earth Sci 101 671-423
  • [23] Gee J(1998)O J Metamorph Geol 16 415-1430
  • [24] Haggas S(2015) and J Geophys Res 120 1415-789
  • [25] Hertogen J(1988)-Fe Philos Mag A 57 779-912
  • [26] Hirth G(2002)O Geophys J Int 151 890-72
  • [27] Holm P(1997)Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides) J Phys Chem Solids 58 63-1354
  • [28] Dieckmann R(1997)Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals Ber Bunsen-Ges 101 1351-1441
  • [29] Schmalzried H(1958)Domain wall pinning and dislocations: investigating magnetite deformed under conditions analogous to nature using transmission electron microscopy J Phys Chem 62 1438-1018
  • [30] Duclos R(1981)Transient creep of olivine: point-defect relaxation times J Soc Mater Sci Jpn 30 1012-1629