High-temperature creep of magnetite and ilmenite single crystals

被引:0
作者
J. L. Till
E. Rybacki
机构
[1] Telegrafenberg,Deutsches GeoForschungsZentrum Helmholz Zentrum Potsdam
[2] University of Iceland,Institute of Earth Sciences
[3] University of Minnesota,Institute for Rock Magnetism
来源
Physics and Chemistry of Minerals | 2020年 / 47卷
关键词
Creep; Mineral physics; Fe-oxides; Experimental deformation;
D O I
暂无
中图分类号
学科分类号
摘要
We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,^{\circ }$$\end{document}C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10-9.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-9.4}$$\end{document} to 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-4}$$\end{document} atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as fO2-0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{-0.7}$$\end{document} and fO20.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{0.4}$$\end{document} at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep.
引用
收藏
相关论文
共 163 条
  • [11] Holtz F(1978)Defects and cation diffusion in magnetite (II) J Mater Sci 13 1740-1748
  • [12] Charpentier P(2016)High temperature creep behaviour of nearly stoichiometric alumina spinel Geophys Res Lett 43 532-540
  • [13] Rabbe P(2004)A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn Earth Planet Sci Lett 226 433-448
  • [14] Manenc J(1988)High-temperature creep of synthetic calcite aggregates: influence of Mn content Earth Planet Sci Lett 89 115-122
  • [15] Crouch A(2002)Oxygen diffusion in magnetite J Phys Chem Solids 63 185-191
  • [16] Crouch A(1963)The influence of oxygen partial pressure on recovery creep in magnetite single crystals Phil Mag 8 877-887
  • [17] Robertson J(1960)Independent slip systems in crystals J Phys Chem Solids 15 311-323
  • [18] Dick H(1970)Dislocations, stacking faults and twins in the spinel structure Am Mineral 55 934-1469
  • [19] Natland J(1977)Oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers Metall Trans A 8 1465-90
  • [20] Alt J(1983)Creep and plasticity of hexagonal polycrystals as related to single crystal slip Contrib Miner Petrol 82 75-476