High-temperature creep of magnetite and ilmenite single crystals

被引:0
作者
J. L. Till
E. Rybacki
机构
[1] Telegrafenberg,Deutsches GeoForschungsZentrum Helmholz Zentrum Potsdam
[2] University of Iceland,Institute of Earth Sciences
[3] University of Minnesota,Institute for Rock Magnetism
来源
Physics and Chemistry of Minerals | 2020年 / 47卷
关键词
Creep; Mineral physics; Fe-oxides; Experimental deformation;
D O I
暂无
中图分类号
学科分类号
摘要
We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,^{\circ }$$\end{document}C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10-9.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-9.4}$$\end{document} to 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-4}$$\end{document} atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as fO2-0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{-0.7}$$\end{document} and fO20.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{0.4}$$\end{document} at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep.
引用
收藏
相关论文
共 163 条
  • [1] Andersen DJ(1988)Internally consistent solution models for Fe-Mg-Mn-Ti oxides. Fe-Ti oxides Am Mineralogist 73 714-726
  • [2] Lindsley DH(1982)Mineralogy of mafic and Fe-Ti oxide-rich differentiates of the Marcy anorthosite massif, Adirondacks. New York Am Mineralogist 67 14-27
  • [3] Ashwal LD(1989)Slip patterns made by sphere indentations on single crystal Mn-Zn ferrite Acta Metall 37 2613-2624
  • [4] Broese Van Groenou A(1967)Self-diffusion of oxygen in magnetite: Techniques for sampling and isootopic analysis of micro quantities of water J Phys Chem 71 4255-4259
  • [5] Kadijk S(2018)Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the moon Geochim Cosmochim Acta 234 50-69
  • [6] Castle J(1968)Mise en evidence de la plasticite de la magnetite mesure de la durete en fonction de la temperature Mater Res Bull 3 69-78
  • [7] Surman P(1972)High-temperature deformation of polycrystalline Fe J Am Ceram Soc 55 558-563
  • [8] Charlier B(1990)O Acta Metall Mater 38 2567-2572
  • [9] Grove TL(2000)Creep and oxygen diffusion in magnetite Earth Planet Sci Lett 179 31-51
  • [10] Namur O(1977)A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge Berichte der Bunsengesellschaft für Physikalische Chemie 81 414-419