Sign-changing solutions for Schrödinger–Kirchhoff-type fourth-order equation with potential vanishing at infinity

被引:0
作者
Wen Guan
Hua-Bo Zhang
机构
[1] Lanzhou University of Technology,College of Electrical and Information Engineering
[2] Lanzhou University of Technology,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Biharmonic operator; Sign-changing solution; Nonlocal term; Variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to study the existence of sign-changing solution to the following fourth-order equation: 0.1Δ2u−(a+b∫RN|∇u|2dx)Δu+V(x)u=K(x)f(u)in RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta ^{2}u- \biggl(a+ b \int _{\mathbb{R}^{N}} \vert \nabla u \vert ^{2}\,dx \biggr) \Delta u+V(x)u=K(x)f(u) \quad\text{in } \mathbb{R}^{N}, $$\end{document} where 5≤N≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$5\leq N\leq 7$\end{document}, Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta ^{2}$\end{document} denotes the biharmonic operator, K(x),V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x), V(x)$\end{document} are positive continuous functions which vanish at infinity, and f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} is only a continuous function. We prove that the equation has a least energy sign-changing solution by the minimization argument on the sign-changing Nehari manifold. If, additionally, f is an odd function, we obtain that equation has infinitely many nontrivial solutions.
引用
收藏
相关论文
共 139 条
  • [1] Agarwal Kritika R.(2019)A mathematical fractional model with non-singular kernel for thrombin-receptor activation in calcium signaling Math. Methods Appl. Sci. 42 7160-7171
  • [2] Purohit S.D.(2020)Existence and uniqueness of miscible flow equation through porous media with a nonsingular fractional derivative AIMS Math. 5 1062-1073
  • [3] Agarwal R.(2013)Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity J. Differ. Equ. 254 1977-1991
  • [4] Prasad Yadav M.(2015)Existence and multiplicity of solutions for fourth-order elliptic Kirchhoff equations with potential term Complex Var. Elliptic Equ. 60 668-695
  • [5] Baleanu D.(1973)Initial-boundary value problems for an extensible beam Math. Anal. Appl. 42 61-90
  • [6] Purohit S.D.(2004)Sign changing solutions of superlinear Schrödinger equations Commun. Partial Differ. Equ. 29 25-42
  • [7] Alves C.O.(2005)Three nodal solutions of singularly perturbed elliptic equations on domains without topology Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 259-281
  • [8] Souto M.A.S.(1993)Infinitely many radial solutions of a semilinear elliptic problem on Arch. Ration. Mech. Anal. 124 261-276
  • [9] Ansari H.(1955)A new approach to the analysis of large deflections of plates Appl. Mech. 22 465-472
  • [10] Vaezpour S.(1997)A sign-changing solution for a superlinear Dirichlet problem Rocky Mt. J. Math. 27 1041-1053