The low-temperature phase of Kac-Ising models

被引:0
作者
Anton Bovier
Miloš Zahradník
机构
[1] Weierstrass-Institut für Angewandte Analysis und Stochastik,Department of Mathematics
[2] Charles University,undefined
来源
Journal of Statistical Physics | 1997年 / 87卷
关键词
Ising models; Kac potentials; low-temperature Gibbs states; contours; Peierls argument;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the low-temperature phase of ferromagnetic Kax-Ising models in dimensionsd≥2. We show that if the range of interactions is γ−1, then two disjoint translation-invariant Gibbs states exist if the inverse temperature β satisfies β−1⩾γN, where κ=d(1−ɛ)/(2d+2)(d+1), for any ε>0. The proof involves the blocking procedure usual for Kac models and also a contour representation for the resulting long-range (almost) continuous-spin system which is suitable for the use of a variant of the Peierls argument.
引用
收藏
页码:311 / 332
页数:21
相关论文
共 21 条
  • [1] Bovier A.(1995)Large deviation principles for the Hopfield model and the Kac-Hopfield model Prob. Theory Related Fields 101 511-546
  • [2] Gayrard V.(1982)Perburbation about the mean field critical point Commun. Math. Phys. 86 337-362
  • [3] Picco P.(1993)Convergence of path measures arising from a mean field or polaron type interaction Prob. Theory Related Fields 95 283-310
  • [4] Bricmont J.(1995)Corrections to the critical temperature in 2D Ising systems with Kac potentials J. Stat. Phys. 78 1131-1138
  • [5] Fontaine J. R.(1993)Interfaces and typical Gibbs configurations for one-dimensional Kac potentials Prob. Theory Related Fields 96 57-96
  • [6] Speer E.(1970)Prescribing a system of random variables by conditional distributions Theore Prob. Appl. 15 458-486
  • [7] Bolthausen E.(1963)On the van der Waals theory of liquidvapour equilibrium. l. Discussion of a one-dimensional model J. Math. Phys. 4 216-228
  • [8] Schmock U.(1966)Rigorous treatment of the van der Waals Maxwell theory of the liquid-vapour transition J. Math. Phys. 7 98-113
  • [9] Cassandro M.(1936)On the Ising model of ferromagnetism Proc. Camb. Phil. Soc. 32 477-481
  • [10] Marra R.(undefined)undefined undefined undefined undefined-undefined