Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm

被引:1
作者
Guillermo Santamaría-Bonfil
Juan Frausto-Solís
Ignacio Vázquez-Rodarte
机构
[1] ITESM,
[2] UPEMOR,undefined
来源
Computational Economics | 2015年 / 45卷
关键词
Support vector regression; Genetic algorithm; Boltzmann selection; Chaotic number generator; Parameter optimization; Volatility forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Volatility forecasting is an important process required to measure variability in equity prices, risk management, and several other financial activities. Generalized autoregressive conditional heteroscedastic methods (GARCH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textit{GARCH})$$\end{document} have been used to forecast volatility with reasonable success due unreal assumptions about volatility underlying process. Recently, a supervised learning machine called support vector regression (SVR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(SVR)$$\end{document} has been employed to forecast financial volatility. Nevertheless, the quality and stability of the model obtained through SVR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR$$\end{document} training process depend strongly on the selection of SVR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR$$\end{document} parameters. Typically, these are tuned by a grid search method (SVRGS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(SVR_{GS})$$\end{document}; however, this tuning procedure is prone to get trapped on local optima, requires a priori information, and it does not concurrently tune the kernels and its parameters. This paper presents a new method called SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} for the financial volatility forecasting problem which selects simultaneously the proper kernel and its parameter values. SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} is a hybrid genetic algorithm which uses several genetic operators to enhance the exploration of solutions space: it introduces a new genetic operator called Boltzmann selection, and the use of several random number generators. Experimental data correspond to two ASEAN and two latinoamerican market indexes. SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} results are compared against GARCH1,1andSVRGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{GARCH}\left( 1,1\right) \hbox { and }SVR_{GS}$$\end{document} method. It uses the mean absolute percentage error and directional accuracy functions for measuring quality results. Experimentation shows that, in general, SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} overcomes quality of GARCH1,1andSVRGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{GARCH}\left( 1,1\right) \hbox { and }SVR_{GS}$$\end{document}.
引用
收藏
页码:111 / 133
页数:22
相关论文
共 69 条
[1]  
Ayat N(2005)Automatic model selection for the optimization of SVM kernels Journal of Pattern Recognition 38 1733-1745
[2]  
Cheriet M(1986)Generalized autoregressive conditional heteroskedasticity Journal of Econometrics 31 307-327
[3]  
Suen C(2003)Chaotic sequences to improve the performance of evolutionary algorithms IEEE Transactions on Evolutionary Computation 7 289-304
[4]  
Bollerslev T(2010)Support vector regression based GARCH model with application to forecasting volatility of financial returns Journal of Forecasting 29 406-433
[5]  
Caponetto R(2009)A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression Expert Systems with Applications 36 4725-4735
[6]  
Fortuna L(1995)Support vector networks Machine Learning 20 273-297
[7]  
Fazzino S(1994)A Markov chain analysis of genetic algorithms with a state dependent fitness function Complex Systems 8 407-417
[8]  
Xibilia M(1999)Using chaos in genetic algorithm Proceedings of the 1999 Congress on Evolutionary Computation (CEC99) 3 2094-2101
[9]  
Chen S(1997)An artificial neural network-GARCH model for international stock return volatility Journal of Empirical Finance 4 17-46
[10]  
Jeong K(1997)Support vector regression machines Advances in Neural Information Processing Systems 9 155-161