Invariant G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_1$$\end{document} structures on flag manifolds

被引:0
作者
Luciana A. Alves
Neiton Pereira da Silva
机构
[1] Federal University of Uberlândia,
关键词
Flag manifolds; -roots; Connectedness by triples with zero sum; Almost Hermitian manifold; structures; 53C55; 53D15; 22F30;
D O I
10.1007/s10711-020-00576-w
中图分类号
学科分类号
摘要
Let FΘ=U/KΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{\Theta }=U/K_\Theta $$\end{document} be a partial flag manifold, where KΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\Theta $$\end{document} is the centralizer of a torus in U. We study U-invariant almost Hermitian structures on FΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{\Theta }$$\end{document}. The classification of these structures are naturally related with the system Rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathfrak {t}}$$\end{document} of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {t}}$$\end{document}-roots associated to FΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{\Theta }$$\end{document}. We introduced the notion of connectedness by triples with zero sum in a general subset of a vector space and proved that the set of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {t}}$$\end{document}-roots satisfies this property. Using this result, the invariant G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_1$$\end{document} structures on FΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{\Theta }$$\end{document} are completely classified.
引用
收藏
页码:227 / 243
页数:16
相关论文
共 23 条
  • [1] Alekseevsky DV(2007)Riemannian flag manifolds with homogeneous geodesics Trans. Am. Math. Soc. 359 3769-3789
  • [2] Arvanitoyeorgos A(1986)Invariant Kähler-Einstein metrics on compact homogeneous spaces Funct. Anal. Appl. 20 171-182
  • [3] Alekseevsky DV(2006)Geometry of flag manifolds Int J Geom Methods Mod Phys 3 957-974
  • [4] Perelomov AM(1958)Characteristic classes and homogeneous spaces I. Am. J. Math. 80 458-538
  • [5] Arvanitoyeorgos A(2003)Characteristic properties of almost Hermitian structures on homogeneous reductive spaces Math. Not. 73 1-325
  • [6] Borel A(2011)Variational results on flag manifolds: harmonic maps, geodesics and Einstein metrics J. Fixed Point Theory Appl. 10 307-205
  • [7] Hirzebruch F(1976)Un exemple de variété pseudo-kählérienne ( C. R. Acad. Sci. Paris 283 203-366
  • [8] Dashevich OV(1966)-variété) Illinois J. Math. 10 353-58
  • [9] Da Silva NP(1980)Some examples of almost Hermitian manifolds Ann. Mat. Pura Appl. 123 35-159
  • [10] Grama L(1968)The sixteen classes of almost Hermitian manifolds and their linear invariants J. Differ. Geom. 2 115-310