On the number of edges in induced subgraphs of a special distance graph

被引:0
作者
F. A. Pushnyakov
机构
[1] Moscow Institute of Physics and Technology,
来源
Mathematical Notes | 2016年 / 99卷
关键词
distance graph; clique; cycle; coloring; Borsuk problem;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain new estimates for the number of edges in induced subgraphs of a special distance graph.
引用
收藏
页码:545 / 551
页数:6
相关论文
共 21 条
  • [1] Raigorodskii A. M.(2001)Borsuk’s problem and the chromatic numbers of some metric spaces Uspekhi Mat. Nauk 56 107-146
  • [2] Raigorodskii A. M.(2010)On the chromatic numbers of spheres in Euclidean spaces Dokl. Ross. Akad. Nauk 432 174-177
  • [3] Raigorodskii A. M.(2012)On the chromatic numbers of spheres in Rn Combinatorica 32 111-123
  • [4] Bogolyubskii L. I.(2014)Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs Dokl. Ross. Akad. Nauk 457 383-387
  • [5] Gusev A. S.(2015)Independence numbers and chromatic numbers of the random subgraphs of some distance graphs Mat. Sb. 206 3-36
  • [6] Pyaderkin M. M.(2007)Around Borsuk’s hypothesis Sovrem. Mat. Fundam. Napravl. 23 147-164
  • [7] Raigorodskii A. M.(1972)A certain constructive estimate of the Ramsey number Mat. Lapok 23 301-302
  • [8] Bogolyubskii L. I.(2000)Codes with forbidden distances DiscreteMath. 213 3-11
  • [9] Gusev A. S.(2013)Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size Mat. Sb. 204 49-78
  • [10] Pyaderkin M. M.(2009)On the Ramsey numbers for complete distance graphs with vertices in 0, 1n Mat. Sb. 200 63-80