Producibility in hierarchical self-assembly

被引:0
作者
David Doty
机构
[1] California Institute of Technology,
[2] University of California,undefined
来源
Natural Computing | 2016年 / 15卷
关键词
Hierarchical; Self-assembly; Deterministic;
D O I
暂无
中图分类号
学科分类号
摘要
Three results are shown on producibility in the hierarchical model of tile self-assembly. It is shown that a simple greedy polynomial-time strategy decides whether an assembly α is producible. The algorithm can be optimized to use O(|α|log2|α|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha | \log ^2 |\alpha |)$$\end{document} time. Cannon et al. (STACS 2013: proceedings of the thirtieth international symposium on theoretical aspects of computer science. pp 172–184, 2013) showed that the problem of deciding if an assembly α is the unique producible terminal assembly of a tile system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} can be solved in O(|α|2|T|+|α||T|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha |^2 |{\mathcal {T}}| + |\alpha | |{\mathcal {T}}|^2)$$\end{document} time for the special case of noncooperative “temperature 1” systems. It is shown that this can be improved to O(|α||T|log|T|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha | |{\mathcal {T}}| \log |{\mathcal {T}}|)$$\end{document} time. Finally, it is shown that if two assemblies are producible, and if they can be overlapped consistently—i.e., if the positions that they share have the same tile type in each assembly—then their union is also producible .
引用
收藏
页码:41 / 49
页数:8
相关论文
共 33 条
[1]  
Barish RD(2009)An information-bearing seed for nucleating algorithmic self-assembly Proc Nat Acad Sci 106 6054-6059
[2]  
Schulman R(2012)Theory of algorithmic self-assembly Commun ACM 55 78-88
[3]  
Rothemund PWK(2000)Synthesis and crystal structure of a stable S-nitrosothiol bearing a novel steric protection group and of the corresponding S-nitrothiol Tetrahedron Lett 41 8479-8483
[4]  
Winfree E(1954)“Steric protection” of hydrophobic colloidal particles by adsorption of flexible macromolecules J Chem Phys 22 1778-217
[5]  
Doty D(1960)“Steric” stabilization of colloidal solutions by adsorption of flexible macromolecules J Polym Sci 47 203-378
[6]  
Goto K(1973)Algorithm 447: efficient algorithms for graph manipulation Commun ACM 16 372-405
[7]  
Hinob Y(2009)Strict self-assembly of discrete Sierpinski triangles Theor Comput Sci 410 384-109
[8]  
Kawashima T(2010)Polyomino-safe DNA self-assembly via block replacement Nat Comput 9 97-510
[9]  
Kaminagab M(2012)Identifying shapes using self-assembly Algorithmica 64 481-15241
[10]  
Yanob E(2007)Synthesis of crystals with a programmable kinetic barrier to nucleation Proc Nat Acad Sci 104 15236-1616