共 29 条
- [21] Multiple normalized solutions to Schrödinger equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} with critical growth and potentialMultiple normalized solutions to Schrödinger equationsZ. Xie et al. Journal of Fixed Point Theory and Applications, 2024, 26 (4)
- [22] Existence and Asymptotical Behavior of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Normalized Standing Wave Solutions to HLS Lower Critical Choquard Equation with a Nonlocal Perturbation Qualitative Theory of Dynamical Systems, 2024, 23 (5)
- [23] Existence of Weak Solutions for Weighted Robin Problem Involving p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\left( .\right)$$\end{document}-biharmonic operator Differential Equations and Dynamical Systems, 2024, 32 (4) : 1159 - 1174
- [24] Existence of two normalized solutions for a Choquard equation with exponential growth and an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-subcritical perturbationExistence of two normalized solutions for...H. Li et al. Zeitschrift für angewandte Mathematik und Physik, 2024, 75 (6)
- [25] Normalized solutions for critical Schrödinger–Poisson system involving p-Laplacian in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}Normalized solutions for critical Schrödinger–Poisson systemD. Xiao et al. Zeitschrift für angewandte Mathematik und Physik, 2025, 76 (1)
- [26] On the mass concentration of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-constrained minimizers for a class of Schrödinger–Poisson equations Zeitschrift für angewandte Mathematik und Physik, 2018, 69 (3)
- [27] Normalized ground state solutions of Schrödinger-KdV system in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}Normalized ground state solutions...Q. Gao, Q. Wang and X. Chang Zeitschrift für angewandte Mathematik und Physik, 2024, 75 (6)
- [28] Standing waves with prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm to nonlinear Schrödinger equations with combined inhomogeneous nonlinearities Letters in Mathematical Physics, 114 (1)
- [29] Existence and concentration solutions for a coupled elliptic system with critical exponential growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2 $$\end{document} and potentials wellExistence and concentration solutionsG. S. A. Costa, G. M. Figueiredo and S. I. M. Neto Zeitschrift für angewandte Mathematik und Physik, 2025, 76 (3)