A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species

被引:0
|
作者
Rui Peng
Xiao-Qiang Zhao
机构
[1] Jiangsu Normal University,Department of Mathematics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
关键词
Phytoplankton model; Periodicity; Reproduction number; Threshold dynamics; 35K57; 35B20; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document}. Then we derive various characterizations of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document} with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.
引用
收藏
页码:755 / 791
页数:36
相关论文
共 50 条
  • [21] Hopf bifurcation in a reaction-diffusion-advection model with nonlocal delay effect and Dirichlet boundary condition
    Wen, Tingting
    Wang, Xiaoli
    Zhang, Guohong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [22] Evolution of conditional dispersal: a reaction-diffusion-advection model
    Chen, Xinfu
    Hambrock, Richard
    Lou, Yuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) : 361 - 386
  • [23] On One Model Problem for the Reaction-Diffusion-Advection Equation
    Davydova, M. A.
    Zakharova, S. A.
    Levashova, N. T.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (09) : 1528 - 1539
  • [24] A nonlocal reaction-diffusion-advection system modeling autotroph-mixotroph interactions
    Li, Danyang
    Han, Xu
    Zhang, Jimin
    Cong, Pingping
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [25] Existence and Stability of Stationary States of a Reaction-Diffusion-Advection Model for Two Competing Species
    Ma, Li
    Tang, De
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (05):
  • [26] Front formation and dynamics in one reaction-diffusion-advection model
    Volkov V.T.
    Grachev N.E.
    Dmitriev A.V.
    Nefedov N.N.
    Mathematical Models and Computer Simulations, 2011, 3 (2) : 158 - 164
  • [27] Hopf bifurcation in a delayed reaction-diffusion-advection population model
    Chen, Shanshan
    Lou, Yuan
    Wei, Junjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) : 5333 - 5359
  • [28] Existence and Stability of Coexistence States for a Reaction-diffusion-advection Model
    Wu, Jianhua
    Yuan, Hailong
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 865 - 880
  • [29] Analysis of a Reaction-Diffusion-Advection Model with Various Allee Effects
    Alzaleq, Lewa'
    Manoranjan, Valipuram
    MATHEMATICS, 2023, 11 (10)
  • [30] Positive steady states of reaction-diffusion-advection competition models in periodic environment
    Huang, Yin-Liang
    Wu, Chang-Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 724 - 745