A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species

被引:0
|
作者
Rui Peng
Xiao-Qiang Zhao
机构
[1] Jiangsu Normal University,Department of Mathematics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
关键词
Phytoplankton model; Periodicity; Reproduction number; Threshold dynamics; 35K57; 35B20; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document}. Then we derive various characterizations of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document} with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.
引用
收藏
页码:755 / 791
页数:36
相关论文
共 50 条
  • [1] A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species
    Peng, Rui
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 72 (03) : 755 - 791
  • [2] GLOBAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION-ADVECTION TWO-SPECIES PHYTOPLANKTON MODEL
    Jiang, Danhua
    Cheng, Shiyuan
    Li, Yun
    Wang, Zhi-Cheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3841 - 3853
  • [3] Competitive exclusion in a nonlocal reaction-diffusion-advection model of phytoplankton populations
    Jiang, Danhua
    Lam, King-Yeung
    Lou, Yuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [4] A Nonlocal Reaction-Diffusion-Advection System Modeling the Phytoplankton and Zooplankton
    Wang, Biao
    Nie, Hua
    Wu, Jianhua
    STUDIES IN APPLIED MATHEMATICS, 2025, 154 (01)
  • [5] On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics
    Du, Yihong
    Mei, Linfeng
    NONLINEARITY, 2011, 24 (01) : 319 - 349
  • [6] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [7] ON A NONLOCAL REACTION-DIFFUSION-ADVECTION SYSTEM MODELING PHYTOPLANKTON GROWTH WITH LIGHT AND NUTRIENTS
    Mei, Linfeng
    Zhang, Xiaoyan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 221 - 243
  • [8] Hopf Bifurcation in a Reaction-Diffusion-Advection Two Species Model with Nonlocal Delay Effect
    Li, Zhenzhen
    Dai, Binxiang
    Han, Renji
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) : 2453 - 2486
  • [9] On a nonlocal reaction-diffusion-advection system modelling the growth of phytoplankton with cell quota structure
    Hsu, Sze-Bi
    Mei, Linfeng
    Wang, Feng-Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5353 - 5378
  • [10] HOPF BIFURCATION IN A TWO-SPECIES REACTION-DIFFUSION-ADVECTION COMPETITIVE MODEL WITH NONLOCAL DELAY
    Wen, Tingting
    Wang, Xiaoli
    Zhang, Guohong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (05) : 1517 - 1544