Dynamics of laser-induced tunable focusing in silicon

被引:0
作者
Nadav Shabairou
Maor Tiferet
Zeev Zalevsky
Moshe Sinvani
机构
[1] Bar-Ilan University,Faculty of Engineering and the Nano
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report here on focusing of a probe IR (λ = 1.55 μm) laser beam in silicon. The focusing is done by a second pump laser beam, at λ = 0.775 μm and 30 ps pulse width, with a donut shape that is launched collinearly and simultaneously (with some delay time) with the IR beam pulse. The pump beam pulse is absorbed in the silicon and creates, temporally, a free charge carriers (FCCs) donut pattern in the silicon. Following the plasma dispersion effect, the donut FCCs shapes a complex index of refraction pattern in the silicon that serves as a sort of dynamic GRIN lens for the probe beam due to the diffusion of the FCCs towards the donut center. This lens can be tuned to its focal point by the pump-probe delay time to reduce the point spread function (PSF) of the IR probe beam. We start seeing the focusing of the probe beam at pump-probe delay time of Δt≈100ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\Delta t }\approx 100\mathrm{ ps}$$\end{document}. The best focusing (results in PSF <2μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 2\mathrm{ \mu m}$$\end{document}) was observed at Δt≈350ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\Delta t}\approx 350\mathrm{ ps}$$\end{document} and it slowly degrades before the FCCs full recombination at Δt∼12ns\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\Delta t }\sim 12\mathrm{ ns}$$\end{document}. We propose this beam shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface dependent on the pump wavelength and the pulse width. We also proposed this technique for direct measurement of the FCCs dynamics.
引用
收藏
相关论文
共 37 条
[1]  
Schermelleh L(2010)A guide to super-resolution fluorescence microscopy J. Cell Biol. 190 165-175
[2]  
Heintzmann R(2014)Introduction to super-resolution microscopy Microscopy 63 177-192
[3]  
Leonhardt H(1992)Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation Opt. Commun. 93 277-282
[4]  
Yamanaka M(2009)Microscopy and its focal switch Nat. Methods 6 24-32
[5]  
Smith NI(2009)STED microscopy reveals crystal colour centres with nanometric resolution Nat. Photonics 3 144-147
[6]  
Fujita K(1991)Breaking the diffraction barrier: Optical microscopy on a nanometric scale Science 251 1468-1470
[7]  
Hell S(2006)Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat Methods 3 793-796
[8]  
Stelzer EHK(2013)Far-field imaging of non-fluorescent species with subdiffraction resolution Nat. Photonics 7 449-453
[9]  
Hell SW(1987)Electrooptical effects in silicon IEEE J. Quantum Electron. 23 123-129
[10]  
Rittweger E(2014)Usage of laser timing probe for sensing of programmed charges in EEPROM devices IEEE Trans. Dev. Mater. Reliab. 14 304-310