Generalized Halpern iteration with new control conditions and its application

被引:0
作者
Hai Yu
Fenghui Wang
机构
[1] Luoyang Normal University,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2023年 / 25卷
关键词
Halpern iteration; nonexpansive mapping; Hilbert space; strong convergence; split feasibility problem; 47H09; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the generalized Halpern iteration for computing fixed points of nonexpansive mappings in Hilbert space setting, and prove the strong convergence under new control conditions on parameters. The convergence results generalize the existing ones in the literature. We also present a convergence rate analysis for the generalized Halpern iteration with a particular choice of parameters. Finally, we give an application to the split feasibility problem and two numerical examples for illustrating the performance of the algorithm.
引用
收藏
相关论文
共 50 条
[1]  
Byrne C(2002)Iterative oblique projection onto convex sets and the split feasibility problem Inv. Probl. 18 441-453
[2]  
Censor Y(1994)A multiprojection algorithm using Bregman projections in product space Num. Algorithms. 8 221-239
[3]  
Elfving T(2006)Iterative approximation of fixed points of nonexpansive mappings J. Math. Anal. Appl. 318 288-295
[4]  
Chidume CE(2014)On the rate of convergence of Krasnosel’skiĭ-Mann iterations and their connection with sums of Bernoullis Israel J. Math. 199 757-772
[5]  
Chidume CO(1967)Fixed points of nonexpanding maps Bull. Am. Math. Soc. 73 957-961
[6]  
Cominetti R(2014)Boundary point algorithms for minimum norm fixed points of nonexpansive mappings Fixed Point Theroy Appl. 2014 56-620
[7]  
Soto JA(2017)Generalized Krasnosel’skiĭ-Mann-type iterations for nonexpansive mappings in Hilbert spaces Comput. Optim. Appl. 67 593-60
[8]  
Vaisman J(2005)Strong convergence of modified Mann iterations Nonlinear Anal. 61 51-127
[9]  
Halpern B(1955)Two remarks on the method of successive approximations Uspekhi Mat. Nauk 10 123-1359
[10]  
He S(1977)Approximation de points fixes de contractions, C R. Acad. Sci. Paris Ser. A-B 284 1357-510