Equivalence of order and algebraic properties in ordered ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras

被引:0
作者
Matthias Schötz
机构
[1] Université libre de Bruxelles,Département de mathématiques
关键词
-Algebra; -algebra; Partial order; -Algebra; Riesz space; 47L60; 06F25;
D O I
10.1007/s11117-020-00792-4
中图分类号
学科分类号
摘要
The aim of this article is to describe a class of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras that allows to treat well-behaved algebras of unbounded operators independently of a representation. To this end, Archimedean ordered ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras (∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras whose real linear subspace of Hermitian elements are an Archimedean ordered vector space with rather weak compatibilities with the algebraic structure) are examined. The order induces a translation-invariant uniform metric which comes from a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-norm in the bounded case. It will then be shown that uniformly complete Archimedean ordered ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras have good order properties (like existence of infima, suprema or absolute values) if and only if they have good algebraic properties (like existence of inverses or square roots). This suggests the definition of Su∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras as uniformly complete Archimedean ordered ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras which have all these equivalent properties. All methods used are completely elementary and do not require any representation theory and not even any assumptions of boundedness, so Su∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras generalize some important properties of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras to algebras of unbounded operators. Similarly, they generalize some properties of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}-algebras (certain lattice-ordered commutative real algebras) to non-commutative ordered ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras. As an example, Su∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras of unbounded operators on a Hilbert space are constructed. They arise e.g. as ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebras of symmetries of a self-adjoint (not necessarily bounded) Hamiltonian operator of a quantum mechanical system.
引用
收藏
页码:883 / 909
页数:26
相关论文
共 15 条
[1]  
Buskes G(1991)Functional calculus on riesz spaces Indagationes Mathematicae 2 423-436
[2]  
de Pagter B(2000)Almost f-algebras: commutativity and the Cauchy–Schwarz inequality Positivity 4 227-231
[3]  
van Rooij A(2009)A representation theorem for archimedean quadratic modules on *-rings Can. Math. Bull. 52 39-52
[4]  
Buskes G(1961)On the structure of a class of archimedean lattice-ordered algebras Fundam. Math. 50 73-94
[5]  
van Rooij A(2014)Commutativity of some archimedean ordered algebras Positivity 18 805-821
[6]  
Cimprič J(1974)Self-adjoint algebras of unbounded operators II Trans. Am. Math. Soc. 187 261-293
[7]  
Henriksen M(1981)ff-banachverbandsalgebren Math. Z. 177 193-205
[8]  
Johnson D(2005)A strict positivstellensatz for the Weyl algebra Math. Ann. 331 779-794
[9]  
Kouki N(2006)A strict positivstellensatz for enveloping algebras Math. Z. 254 641-653
[10]  
Toumi MA(undefined)undefined undefined undefined undefined-undefined