Homoclinic orbits for the second-order Hamiltonian systems with obstacle item

被引:0
作者
CuiCui Yin
FuBao Zhang
机构
[1] Southeast University,Department of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
Hamiltonian system; homoclinic orbits; super-quadratic; asymptotically linear; spectrum; 30P12; 32C12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the existence of homoclinic orbits for the second-order Hamiltonian system with obstacle item, ü(t) − A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot u $$\end{document} (t) = ∇F(t, u), where F(t, u) is T-periodic in t with ∇F(t, u) = L(t)u + ∇R(t, u). By using a generalized linking theorem for strongly indefinite functionals, we prove the existence of homoclinic orbits for both the super-quadratic case and the asymptotically linear one.
引用
收藏
页码:3005 / 3014
页数:9
相关论文
共 21 条
  • [1] Bartsch T.(2002)Homoclinic solutions of an infinite-dimensional Hamiltonian system Math Z 240 289-310
  • [2] Ding Y. H.(1999)On a nonlinear schrodinger equation with periodic potential Math Ann 313 15-37
  • [3] Ding Y. H.(1999)Homoclinic orbits of a Hamiltonian system Z Angew Math Phys 50 759-778
  • [4] Bartsch T.(2002)Solutions to a class of Schrödinger equations Proc Amer Math Soc 130 689-696
  • [5] Ding Y. H.(2006)Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms Comm Contemp Math 8 453-480
  • [6] Willem M.(1992)Existence of infinitely many homoclinic orbits in Hamiltonian systems Math Z 209 27-42
  • [7] Ding Y. H.(1990)First order elliptic systems and the existence of homoclinic orbits in Hamiltionian systems Math Ann 288 483-503
  • [8] Ding Y. H.(1984)The concentration compactness principle in the calculus of variations, II: The locally compact cases Ann Inst H Poincaré Anal Non Linéaire 1 223-283
  • [9] Eric S.(2004)Existence of homoclinic solutions for the second Hamiltonian Systems J Math Anal Appl 291 203-213
  • [10] Hofer H.(1991)Homoclinic orbits in a first order super-quadratic Hamiltonian systems: Convergence of subharmonic orbits J Differential Equations 94 315-339