Finite groups with many cyclic subgroups

被引:0
作者
Xiaofang Gao
Rulin Shen
机构
[1] Hubei Minzu University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2023年 / 54卷
关键词
Number of cyclic subgroups; 2-Groups; Involutions; 20D60; 20D06;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group, c(G) the number of its cyclic subgroups, and α(G)=c(G)/|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)=c(G)/|G|$$\end{document}. Set I(G)=|{g∈G|g2=1}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(G)=|\{g\in G|g^2=1\}|$$\end{document}. In this paper we prove if α(G)=3/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)=3/4$$\end{document}, then G is isomorphic to a direct product of an elementary abelian 2-group and a dihedral group D16,D24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{16}, D_{24}$$\end{document}, or a group satisfying I(G)=12|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I({G})=\frac{1}{2}|{G}|$$\end{document} and exp(G)=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp ({G})=4$$\end{document}.
引用
收藏
页码:485 / 498
页数:13
相关论文
共 3 条
  • [1] Garonzi M(2018)On the number of cyclic subgroups of a finite group Bull Braz Math Soc, New Series 49 515-530
  • [2] Lima I(1970)On groups consisting mostly of inolutions Proc. Cambridge Philos. Soc. 67 251-262
  • [3] Wall CT(undefined)undefined undefined undefined undefined-undefined