Jensen’s inequality for g-convex function under g-expectation

被引:4
作者
Guangyan Jia
Shige Peng
机构
[1] Shandong University,School of Mathematics
来源
Probability Theory and Related Fields | 2010年 / 147卷
关键词
Backward stochastic differential equation; Backward stochastic viability property; -Convexity; -Expectation; Jensen’s inequality; Viscosity subsolution; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
A real valued function h defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} is called g-convex if it satisfies the “generalized Jensen’s inequality” for a given g-expectation, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(\mathbb{E}^{g}[X])\leq \mathbb{E}^{g}[h(X)]}$$\end{document} holds for all random variables X such that both sides of the inequality are meaningful. In this paper we will give a necessary and sufficient condition for a C2-function being g-convex, and study some more general situations. We also study g-concave and g-affine functions, and a relation between g-convexity and backward stochastic viability property.
引用
收藏
页码:217 / 239
页数:22
相关论文
共 50 条
  • [21] A result on the probability measures dominated by g-expectation
    Jiang L.
    Chen Z.-J.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (3) : 507 - 512
  • [22] Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation
    Peng, Shige
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (12) : 2223 - 2253
  • [23] Jensen's Inequality Under Nonlinear Expectation Generated by BSDE with Jumps
    Na ZHANG
    Guang-yan JIA
    Acta Mathematicae Applicatae Sinica, 2019, 35 (04) : 873 - 884
  • [24] Jensen's Inequality Under Nonlinear Expectation Generated by BSDE with Jumps
    Zhang, Na
    Jia, Guang-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 873 - 884
  • [25] Jensen's inequality for g-expectations in general filtration spaces
    Song, Wenjie
    Wu, Panyu
    Zhang, Guodong
    STATISTICS & PROBABILITY LETTERS, 2021, 169
  • [26] Association of Jensen's inequality for s-convex function with Csiszar divergence
    Khan, Muhammad Adil
    Hanif, Muhammad
    Khan, Zareen Abdul Hameed
    Ahmad, Khurshid
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [27] MULTIDIMENSIONAL DYNAMIC RISK MEASURE VIA CONDITIONAL g-EXPECTATION
    Xu, Yuhong
    MATHEMATICAL FINANCE, 2016, 26 (03) : 638 - 673
  • [28] Fubini theorem for non additive measures in the framework of g-expectation
    Hu, Feng
    Zong, Zhaojun
    Wu, Helin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11776 - 11785
  • [29] A necessary and sufficient condition for probability measures dominated by g-expectation
    Jiang, Long
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (02) : 196 - 201
  • [30] Association of Jensen’s inequality for s-convex function with Csiszár divergence
    Muhammad Adil Khan
    Muhammad Hanif
    Zareen Abdul Hameed Khan
    Khurshid Ahmad
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019