On the global regularity for a 3D Boussinesq model without thermal diffusion

被引:0
作者
Weinan Wang
机构
[1] University of Southern California,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Boussinesq model; Global regularity; 35Q35; 35B65; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper (Ye in Z Angew Math Phys 68:83, 2017), Ye proved the global persistence of regularity for a 3D Boussinesq model in Hs(R3)×Hs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{s}({\mathbb {R}}^3) \times H^{s}({\mathbb {R}}^3)$$\end{document} with s>5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>5/2$$\end{document}. In this paper, we show that the global persistence and uniqueness still hold when s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>3/2$$\end{document}.
引用
收藏
相关论文
共 27 条
  • [1] Adhikari D(2016)Global regularity results for the 2D Boussinesq equations with partial dissipation J. Differ. Equ. 260 1893-1917
  • [2] Cao C(2015)Global regularity for a model Navier–Stokes equations on Analysis 35 195-200
  • [3] Wu J(2006)Global regularity for the 2D Boussinesq equations with partial viscosity terms Adv. Math. 203 497-513
  • [4] Chae D(2013)Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation Arch. Ration. Mech. Anal. 208 985-1004
  • [5] Chae D(2009)On the global well-posedness of the Boussinesq system with zero viscosity Indiana Univ. Math. J. 58 1591-1618
  • [6] Cao C(2005)Global well-posedness of the viscous Boussinesq equations Discrete Contin. Dyn. Syst. 12 1-12
  • [7] Wu J(2018)Partially dissipative 2D Boussinesq equations with Navier type boundary conditions Physica D 376–377 39-48
  • [8] Hmidi T(1988)Commutator estimates and the Euler and Navier–Stokes equations Commun. Pure Appl. Math. 41 891-907
  • [9] Keraani S(2016)Persistence of regularity for solutions of the Boussinesq equations in Sobolev spaces Adv. Differ. Equ. 21 85-108
  • [10] Hou TY(2011)Initial boundary value problem for two-dimensional viscous Boussinesq equations Arch. Ration. Mech. Anal. 199 739-760