Low degree rational spline interpolation

被引:0
作者
Peeter Oja
机构
[1] University of Tartu,Faculty of Mathematics
来源
BIT Numerical Mathematics | 1997年 / 37卷
关键词
65D07; Interpolation; rational spline;
D O I
暂无
中图分类号
学科分类号
摘要
For a strictly monotone functionf on [a,b] we describe the possibility of finding an interpolating rational splineS of the formS(x)=c0+c1x/(1+d1x) on each subinterval of the grida=x0<x1<...<xn=b. This leads to a nonlinear system for which we get the local existence and uniqueness of a solution. We prove that ‖S−f‖∞=O(h3). Numerical test shows good approximation properties of these splines.
引用
收藏
页码:901 / 909
页数:8
相关论文
共 11 条
[1]  
Delbourgo R.(1983)C IMA J. Numer. Anal. 2 141-152
[2]  
Gregory J. A.(1985)-rational quadratic spline interpolation to monotonic data SIAM J. Sci. Stat. Comput. 4 967-976
[3]  
Delbourgo R.(1980)Shape preserving piecewise rational interpolation SIAM J. Numer. Anal. 17 235-246
[4]  
Gregory J. A.(1986)Monotone piecewise cubic interpolation Comput. Aided Geom. Design 18 53-57
[5]  
Fritsch F. N.(1977)Shape preserving spline interpolation SIAM J. Numer. Anal. 14 904-909
[6]  
Carlson R. E.(1987)Monotone and convex spline interpolations Computing 38 261-267
[7]  
Gregory J. A.(undefined)Positive interpolation with rational quadratic splines undefined undefined undefined-undefined
[8]  
Passow E.(undefined)undefined undefined undefined undefined-undefined
[9]  
Roulier J. A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Schmidt J. W.(undefined)undefined undefined undefined undefined-undefined