Arithmetic of Châtelet surfaces under extensions of base fields

被引:0
作者
Han Wu
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
来源
The Ramanujan Journal | 2023年 / 62卷
关键词
Rational points; Hasse principle; Weak approximation; Brauer-Manin obstruction; Châtelet surfaces; 11G35; 14G12; 14G25; 14G05;
D O I
暂无
中图分类号
学科分类号
摘要
For Châtelet surfaces defined over number fields, we study two arithmetic properties, the Hasse principle and weak approximation, when passing to an extension of the base field. Generalizing a construction of Y. Liang, we show that for an arbitrary extension of number fields L/K,  there is a Châtelet surface over K which does not satisfy weak approximation over any intermediate field of L/K,  and a Châtelet surface over K which satisfies the Hasse principle over an intermediate field L′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L'$$\end{document} if and only if [L′:K]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[L': K]$$\end{document} is even.
引用
收藏
页码:997 / 1010
页数:13
相关论文
共 13 条
  • [1] Colliot-Thélène J-L(1980)Descente et principe de Hasse pour certaines variétés rationnelles J. Reine Angew. Math. 1980 150-191
  • [2] Coray D(1987)Intersections of two quadrics and Châtelet surfaces I J. Reine Angew. Math. 373 37-107
  • [3] Sansuc J-J(1987)Intersections of two quadrics and Châtelet surfaces II J. Reine Angew. Math. 374 72-168
  • [4] Colliot-Thélène J-L(1971)A counterexample to the Hasse principle for systems of two quadratic forms in five variables Mat. Zametki 10 253-257
  • [5] Sansuc J-J(1954)Some applications of the local uniformization theorem Am. J. Math. 76 362-374
  • [6] Swinnerton-Dyer S(1955)Some remarks on rational points Mem. Coll. Sci. Univ. Kyoto Ser. A 29 189-192
  • [7] Colliot-Thélène J-L(2009)Existence of rational points on smooth projective varieties J. Eur. Math. Soc. 11 529-543
  • [8] Sansuc J-J(undefined)undefined undefined undefined undefined-undefined
  • [9] Swinnerton-Dyer S(undefined)undefined undefined undefined undefined-undefined
  • [10] Iskovskikh V(undefined)undefined undefined undefined undefined-undefined