Astrophysics with the Laser Interferometer Space Antenna

被引:0
作者
Pau Amaro-Seoane
Jeff Andrews
Manuel Arca Sedda
Abbas Askar
Quentin Baghi
Razvan Balasov
Imre Bartos
Simone S. Bavera
Jillian Bellovary
Christopher P. L. Berry
Emanuele Berti
Stefano Bianchi
Laura Blecha
Stéphane Blondin
Tamara Bogdanović
Samuel Boissier
Matteo Bonetti
Silvia Bonoli
Elisa Bortolas
Katelyn Breivik
Pedro R. Capelo
Laurentiu Caramete
Federico Cattorini
Maria Charisi
Sylvain Chaty
Xian Chen
Martyna Chruślińska
Alvin J. K. Chua
Ross Church
Monica Colpi
Daniel D’Orazio
Camilla Danielski
Melvyn B. Davies
Pratika Dayal
Alessandra De Rosa
Andrea Derdzinski
Kyriakos Destounis
Massimo Dotti
Ioana Duţan
Irina Dvorkin
Gaia Fabj
Thierry Foglizzo
Saavik Ford
Jean-Baptiste Fouvry
Alessia Franchini
Tassos Fragos
Chris Fryer
Massimo Gaspari
Davide Gerosa
Luca Graziani
机构
[1] Universitat Politécnica de Valéncia,Institute of Multidisciplinary Mathematics
[2] Lanzhou University,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology
[3] Lanzhou University,Institute of Theoretical Physics and Research Center of Gravitation
[4] Kavli Institute for Astronomy and Astrophysics,Department of Physics and Astronomy
[5] Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA),Lund Observatory, Department of Astronomy, and Theoretical Physics
[6] Northwestern University,IRFU, CEA
[7] Astronomisches Rechen Institut (University of Heidelberg),Faculty of Physics
[8] Lund University,Department of Physics
[9] Université Paris-Saclay,Geneva Observatory
[10] Institute of Space Science,Gravitational Wave Science Center (GWSC)
[11] University of Bucharest,SUPA, School of Physics and Astronomy
[12] University of Florida,Dipartimento di Matematica e Fisica
[13] University of Geneva,School of Physics and Center for Relativistic Astrophysics, 837 State St NW
[14] Université de Genève,Dipartimento di Fisica “G. Occhialini”
[15] CUNY - Queensborough Community College,Dipartimento di Fisica “G. Occhialini”
[16] American Museum of Natural History,Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science
[17] CUNY Graduate Center,DiSAT
[18] University of Glasgow,Department of Physics and Astronomy
[19] Johns Hopkins University,CNRS, AstroParticule et Cosmologie
[20] Università degli Studi Roma Tre,Astronomy Department, School of Physics
[21] Aix Marseille Univ,Department of Astrophysics/IMAPP
[22] CNRS,Theoretical Astrophysics Group
[23] CNES,Department of Physics
[24] LAM,Niels Bohr International Academy
[25] Georgia Institute of Technology,Centre for Mathematical Sciences
[26] Università degli Studi di Milano-Bicocca,Kapteyn Astronomical Institute
[27] Donostia International Physics Centre (DIPC),Theoretical Astrophysics, IAAT
[28] IKERBASQUE,Institut d’Astrophysique de Paris
[29] Basque Foundation for Science,Astronomisches Rechen
[30] Università degli Studi di Milano-Bicocca,Institut, Zentrum für Astronomie
[31] INFN,Department of Astrophysics
[32] Sezione di Milano-Bicocca,AIM, CEA, CNRS
[33] University of Zurich,Department of Astrophysics
[34] Institute of Space Science,Center for Computational Astrophysics
[35] Università degli studi dell’Insubria,Graduate Center
[36] Vanderbilt University,Department of Science, BMCC
[37] Université de Paris,CNRS and Sorbonne Université, UMR 7095
[38] Peking University,Département d’Astronomie
[39] Radboud University,Center for Theoretical Astrophysics
[40] California Institute of Technology,Department of Astrophysical Sciences
[41] Lund Observatory,School of Physics and Astronomy, Institute for Gravitational Wave Astronomy
[42] University of Milano Bicocca,Dipartimento di Fisica, Sapienza
[43] Niels Bohr Institute,Department of Astronomy
[44] Instituto de Astrofísica de Andalucía (IAA-CSIC),The Inter
[45] Lund University,University Institute for Data Intensive Astronomy
[46] University of Groningen,McGill Space Institute and Department of Physics
[47] INAF - Istituto di Astrofisica e Planetologia Spaziali,Department of Physics
[48] University of Tübingen,Department of Space Science
[49] INAF,Mullard Space Science Laboratory
[50] Osservatorio Astronomico di Brera,Theoretical Astrophysics
来源
Living Reviews in Relativity | / 26卷
关键词
Black holes; Gravitational waves; Stellar remnants; Multi-messenger; Extreme mass ratio in-spirals;
D O I
暂无
中图分类号
学科分类号
摘要
The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
引用
收藏
相关论文
共 7480 条
[1]  
Aarseth SJ(2012)Mergers and ejections of black holes in globular clusters MNRAS 422 841-848
[2]  
Aartsen M(2018)Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922a alert Science 361 147-151
[3]  
Aasi J(2015)Advanced LIGO Class Quantum Grav 32 L12-98
[4]  
Abbott BP(2010)Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors Class Quantum Grav 27 L3-425
[5]  
Abbott R(2016)GW150914: implications for the stochastic gravitational-wave background from binary black holes Phys Rev Lett 116 L44-2871
[6]  
Abbott T(2016)GW150914: first results from the search for binary black hole coalescence with advanced LIGO Phys Rev D 93 L13-657
[7]  
Abernathy MR(2016)Observation of gravitational waves from a binary black hole merger Phys Rev Lett 116 93-1249
[8]  
Ackley K(2017)Exploring the sensitivity of next generation gravitational wave detectors Class Quantum Grav 34 L15-121
[9]  
Adams C(2017)Multi-messenger observations of a binary neutron star merger ApJ 848 415-1664
[10]  
Adams T(2018)GW170817: measurements of neutron star radii and equation of state Phys Rev Lett 121 38-57