Sufficient and Necessary Conditions on the Existence and Estimates of Boundary Blow-Up Solutions for Singular p-Laplacian Equations

被引:0
作者
Xuemei Zhang
Shikun Kan
机构
[1] North China Electric Power University,School of Mathematics and Physics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
singular ; -Laplacian equation; boundary blow-up; sub-supersolution method; existence, nonexistence and estimates; sufficient and necessary conditions; 35J92; 35J75; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω denote a smooth, bounded domain in ℝN (N ≥ 2). Suppose that g is a nondecreasing C1 positive function and assume that b(x) is continuous and nonnegative in Ω, and that it may be singular on ∂Ω. In this paper, we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta p}u = b(x)g(u)\,\,{\rm{for}}x\, \in \,\Omega ,\,\,u(x) \to + \infty \,{\rm{as}}\,{\rm{dist}}\,{\rm{(}}x,\partial \Omega) \to 0.\,$$\end{document} The estimates of such solutions are also investigated. Moreover, when b has strong singularity, the nonexistence of boundary blow-up (radial) solutions and infinitely many radial solutions are also considered.
引用
收藏
页码:1175 / 1194
页数:19
相关论文
共 57 条
[1]  
García-Melián J(2009)Large solutions for equations involving the Z Angew Math Phys 60 594-607
[2]  
García-Melián J(1998)-Laplacian and singular weights J Math Anal Appl 218 49-65
[3]  
Sabina de Lis J(2008)Maximum and comparison principles for operators involving the Calc Var Partial Differential Equations 31 187-204
[4]  
García-Melián J(2007)-Laplacian Appl Math Comput 188 492-498
[5]  
Rossi J(2004)Large solutions to the J Math Anal Appl 298 621-637
[6]  
Sabina de Lis J(2007)-Laplacian for large J Math Anal Appl 325 480-489
[7]  
Yang Z(2011)Existence of positive boundary blow-up solutions for quasilinear elliptic equations via sub and supersolutions J Anal Math 115 213-249
[8]  
Xu B(2011)Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations Electron J Differential Equations 2011 1-10
[9]  
Wu M(1983)Boundary asymptotic and uniqueness of solutions to the Comm Partial Differential Equations 8 773-817
[10]  
Mohammed A(1984)-Laplacian with infinite boundary values J Differential Equations 51 126-150