Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary

被引:0
|
作者
Matthew T Cottrell
Josephine Ras
David L Kirchman
机构
[1] University of Delaware,
[2] School of Marine Science and Policy,undefined
[3] Laboratoire d’Océanographie de Villefranche-sur-mer,undefined
[4] UMR 7093 CNRS et Université Pierre et Marie Curie,undefined
来源
The ISME Journal | 2010年 / 4卷
关键词
AAP bacteria; bacteriochlorophyll; Chesapeake Bay; photoheterotrophy;
D O I
暂无
中图分类号
学科分类号
摘要
Photoheterotrophic microbes use organic substrates and light energy to satisfy their demand for carbon and energy and seem to be well adapted to eutrophic estuarine and oligotrophic oceanic environments. One type of photoheterotroph, aerobic anoxygenic phototrophic (AAP) bacteria, is especially abundant in particle-rich, turbid estuaries. To explore questions regarding the controls of these photoheterotrophic bacteria, we examined their abundance by epifluorescence microscopy, concentrations of the light-harvesting pigment, bacteriochlorophyll a (BChl a) and the diversity of pufM and 16S ribosomal RNA (rRNA) genes in the Chesapeake Bay. Concentrations of BChl a varied substantially, much more so than AAP bacterial abundance, along the estuarine salinity gradient. The BChl a concentration was correlated with turbidity only when oceanic and estuarine waters were considered together. Concentrations of BChl a and BChl a quotas were higher in particle-associated than in free-living AAP bacterial communities and appear to reflect physiological adaptation, not different AAP bacterial communities; pufM genes did not differ between particle-associated and free-living communities. In contrast, particle-associated and free-living bacterial communities were significantly different, on the basis of the analysis of 16S rRNA genes. The BChl a quota of AAP bacteria was not correlated with turbidity, suggesting that pigment synthesis varies in direct response to particles, not light attenuation. The AAP bacteria seem to synthesize more BChl a when dissolved and particulate substrates are available than when only dissolved materials are accessible, which has implications for understanding the impact of substrates on the level of photoheterotrophy compared with heterotrophy in AAP bacteria.
引用
收藏
页码:945 / 954
页数:9
相关论文
共 50 条
  • [1] Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary
    Cottrell, Matthew T.
    Ras, Josephine
    Kirchman, David L.
    ISME JOURNAL, 2010, 4 (07): : 945 - 954
  • [2] Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary
    Monica R Stegman
    Matthew T Cottrell
    David L Kirchman
    The ISME Journal, 2014, 8 : 2339 - 2348
  • [3] Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary
    Stegman, Monica R.
    Cottrell, Matthew T.
    Kirchman, David L.
    ISME JOURNAL, 2014, 8 (11): : 2339 - 2348
  • [4] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [5] Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean
    Boeuf, Dominique
    Cottrell, Matthew T.
    Kirchman, David L.
    Lebaron, Philippe
    Jeanthon, Christian
    FEMS MICROBIOLOGY ECOLOGY, 2013, 85 (03) : 417 - 432
  • [6] Method for quantification of aerobic anoxygenic phototrophic bacteria
    Zhang, Y
    Jiao, NZ
    CHINESE SCIENCE BULLETIN, 2004, 49 (06): : 597 - 599
  • [7] Method for quantification of aerobic anoxygenic phototrophic bacteria
    ZHANG Yao & JIAO Nianzhi Key Laboratory of Marine Environmental Science
    ChineseScienceBulletin, 2004, (06) : 597 - 599
  • [8] Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll
    Hiraishi, A
    Shimada, K
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2001, 47 (04): : 161 - 180
  • [9] Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems
    JIAO Nianzhi
    Michael E. Sieracki
    ZHANG Yao
    DU Hailian
    ChineseScienceBulletin, 2003, (11) : 1064 - 1068
  • [10] Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems
    Jiao, NZ
    Sieracki, ME
    Zhang, Y
    Du, HL
    CHINESE SCIENCE BULLETIN, 2003, 48 (11): : 1064 - 1068