Stability of sums of operators

被引:0
作者
Gil’ M. [1 ]
机构
[1] Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva
关键词
Finite dimensional operators; Linear operators; Operators with Hilbert–Schmidt Hermitian components; Spectrum; Stability;
D O I
10.1007/s11565-016-0243-1
中图分类号
学科分类号
摘要
A linear operator is said to be stable (Hurwitzian) if its spectrum is located in the open left half-plane. We consider the following problem: let A and B be bounded linear operators in a Hilbert space, and A be stable. What are the conditions that provide the stability of A+ B? © 2016, Università degli Studi di Ferrara.
引用
收藏
页码:61 / 70
页数:9
相关论文
共 11 条
[1]  
Bercovici H., Li W.S., Inequalities for eigenvalues of sums in a von Neumann algebra. Recent advances in operator theory and related topics (Szeged, 1999), pp. 113–126, Oper. Theory Adv, Appl, 127, (2001)
[2]  
Daleckii Y.L., Krein M.G., Stability of Solutions of Differential Equations in Banach Space, (1974)
[3]  
Foth P., Eigenvalues of sums of pseudo-hermitian matrices, Electron. J. Linear Algebra, 20, pp. 115-125, (2010)
[4]  
Gil' M.I., Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, (2003)
[5]  
Gil' M.I., A bound for condition numbers of matrices, Electron. J. Linear Algebra, 27, pp. 162-171, (2014)
[6]  
Helmke U., Rosenthal J., Eigenvalue inequalities and Schubert calculus, Math. Nachr., 171, pp. 207-225, (1995)
[7]  
Horn A., Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, pp. 225-241, (1962)
[8]  
Lidskii B.V., Spectral polyhedron of the sum of two Hermitian matrices, Funct. Anal. Appl., 16, pp. 139-140, (1982)
[9]  
Miranda H., Diagonals and eigenvalues of sums of Hermitian matrices. Extreme cases, Proyecciones, 22, 2, pp. 127-134, (2003)
[10]  
Peacock M.J.M., Collings I.B., Honig M.L., Eigenvalue distributions of sums and products of large random matrices via incremental matrix expansions, IEEE Trans. Inf. Theor., 54, 5, pp. 2123-2137, (2008)