Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applications

被引:0
作者
Mohammed Atef
Muhammad Irfan Ali
Tareq M. Al-shami
机构
[1] Menoufia University,Department of Mathematics and Computer Science, Faculty of Science
[2] Islamabad Model College for Girls F-6/2,Department of Mathematics
[3] Sana’a University,Department of Mathematics
来源
Computational and Applied Mathematics | 2021年 / 40卷
关键词
Fuzzy soft ; -neighborhood; Fuzzy soft covering-based optimistic multi-granulation fuzzy rough set; Fuzzy soft covering-based pessimistic multi-granulation fuzzy rough set; Fuzzy soft covering-based variable precision multi-granulation fuzzy rough set; MAGDM; 03E72; 03E20; 68U35; 65Z05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, with the aid of fuzzy soft β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-neighborhoods, we introduce fuzzy soft covering-based multi-granulation fuzzy rough set models. We examine some of the relevant properties of fuzzy soft covering based on optimistic, pessimistic, and variable precision multi-granulation fuzzy rough set models. Then, we give fuzzy soft coverings based on ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-optimistic and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {D}}$$\end{document}-optimistic (ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-pessimistic and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {D}}$$\end{document}-pessimistic) multi-granulation fuzzy rough sets from fuzzy soft measures. It also discusses the interactions between these forms of fuzzy soft coverings based on multi-granulation fuzzy rough sets. Eventually, we apply the proposed models for solving MAGDM problems. The effectiveness and feasibility of our approach are noted from the introduced comparisons between our method and some methods given in the previous studies.
引用
收藏
相关论文
共 132 条
  • [1] Al-shami TM(2019)Investigation and corrigendum to some results related to Filomat 33 3375-3383
  • [2] Al-shami TM(2020)-soft equality and Soft Comput 24 5377-5387
  • [3] El-Shafei ME(2020)-soft equality relations Turk J Math 44 1427-1441
  • [4] Al-shami TM(2020)Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone J Intell Fuzzy Syst 39 4515-4531
  • [5] El-Shafei ME(2021)-soft equality relation Math Comput Simul 185 452-467
  • [6] Atef M(1998)Comparison of six types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space Inf Sci 107 149-167
  • [7] Khalil AM(2011)On three types of soft fuzzy coverings based rough sets Fund Inf 108 223-247
  • [8] Li SG(2007)Extensions and intentions in rough set theory Inf Sci 177 2308-2326
  • [9] Azzam A(2004)Rough sets, coverings and incomplete information Proc IEEE Int Conf Fuzzy Syst 1 103-108
  • [10] El Atik AA(1990)A novel approach to fuzzy rough sets based on a fuzzy covering Int J Gen Syst 17 191-201