Diffraction of the Aharonov–Bohm Hamiltonian

被引:0
作者
Mengxuan Yang
机构
[1] Northwestern University,Department of Mathematics
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we compute the diffractive wave propagator of the Aharonov–Bohm effect (Aharonov and Bohm, Phys Rev 115(3):485, 1959) on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}^2$$\end{document} with a single solenoid using a technique of moving solenoid location. In addition, we compute the corresponding diffraction coefficient which is the principal symbol of the diffractive propagator. This paper proves the propagation of singularities of the Aharonov–Bohm Hamiltonian.
引用
收藏
页码:3619 / 3640
页数:21
相关论文
共 48 条
  • [1] Aharonov Y(1959)Significance of electromagnetic potentials in the quantum theory Phys. Rev. 115 485-54
  • [2] Bohm D(1998)On the Aharonov–Bohm Hamiltonian Lett. Math. Phys. 43 43-1885
  • [3] Adami R(2011)Resonance free regions in magnetic scattering by two solenoidal fields at large separation J. Funct. Anal. 260 1836-448
  • [4] Teta A(2014)Resonances in scattering by two magnetic fields at large separation and a complex scaling method Adv. Math. 256 398-292
  • [5] Alexandrova I(2021)Magnetic perturbations of anyonic and Aharonov-Bohm schrödinger operators J. Math. Phys. 62 032101-331
  • [6] Tamura H(2018)Hamiltonians for two-anyon systems Rend. Mat. Appl. 7 277-1192
  • [7] Alexandrova I(1982)On the diffraction of waves by conical singularities I. Commun. Pure Appl. Math. 35 275-269
  • [8] Tamura H(2020)On radial Schrödinger operators with a Coulomb potential: general boundary conditions Adv. Oper. Theory 5 1132-1184
  • [9] Correggi M(1972)Fourier integral operators. II Acta Math. 128 183-62
  • [10] Fermi D(2008)Mathematical justification of the Aharonov–Bohm Hamiltonian J. Stat. Phys. 133 1175-2168