A multiple Hilbert-type integral inequality with a non-homogeneous kernel

被引:0
作者
Qiliang Huang
Bicheng Yang
机构
[1] Guangdong University of Education,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2013卷
关键词
multiple Hilbert-type integral inequality; kernel; weight function; norm; operator;
D O I
暂无
中图分类号
学科分类号
摘要
By using the way of weight functions and the technic of real analysis, a multiple Hilbert-type integral inequality with a non-homogeneous kernel is given. The operator expression with the norm, the reverses and some examples with the particular kernels are also considered.
引用
收藏
相关论文
共 17 条
  • [1] Bicheng Y(2009)A survey of the study of Hilbert-type inequalities with parameters Adv. Math 28 257-268
  • [2] Zhang K(2002)A bilinear inequality J. Math. Anal. Appl 271 288-296
  • [3] Yang B(2007)A new Hilbert’s type integral inequality Soochow J. Math 33 849-859
  • [4] Yang B(2009)A Hilbert-type integral inequality with a non-homogeneous kernel Journal of Xiamen University (Natural Science) 48 165-169
  • [5] Hong Y(2001)All-side generalization about Hardy-Hilbert integral inequalities Acta Math. Sin 44 619-625
  • [6] He L(2002)An extension of Hilbert’s integral inequality Journal of Shaoguan University (Natural Science) 23 25-30
  • [7] Yu J(2003)On a multiple Hardy-Hilbert’s integral inequality Chin. Ann. Math 24A 25-30
  • [8] Gao M(2003)On the way of weight coefficient and research for Hilbert-type inequalities Math. Inequal. Appl 6 625-658
  • [9] Yang B(2005)Generalization of Hilbert and Hardy-Hilbert integral inequalities Math. Inequal. Appl 8 259-272
  • [10] Yang B(2006)On the norm of an integral operator and applications J. Math. Anal. Appl 321 182-192