Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection

被引:0
|
作者
U. Sirisha
S. Phani Praveen
Parvathaneni Naga Srinivasu
Paolo Barsocchi
Akash Kumar Bhoi
机构
[1] VIT-AP University,School of Computer Science and Engineering
[2] Prasad V Potluri Siddhartha Institute of Technology,Department of Computer Science and Engineering
[3] Sikkim Manipal University,Directorate of Research
[4] KIET Group of Institutions,Institute of Information Science and Technologies
[5] National Research Council,undefined
关键词
Object detection; YOLO; Darknet; Deep learning; Performance analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection is a critical and complex problem in computer vision, and deep neural networks have significantly enhanced their performance in the last decade. There are two primary types of object detectors: two stage and one stage. Two-stage detectors use a complex architecture to select regions for detection, while one-stage detectors can detect all potential regions in a single shot. When evaluating the effectiveness of an object detector, both detection accuracy and inference speed are essential considerations. Two-stage detectors usually outperform one-stage detectors in terms of detection accuracy. However, YOLO and its predecessor architectures have substantially improved detection accuracy. In some scenarios, the speed at which YOLO detectors produce inferences is more critical than detection accuracy. This study explores the performance metrics, regression formulations, and single-stage object detectors for YOLO detectors. Additionally, it briefly discusses various YOLO variations, including their design, performance, and use cases.
引用
收藏
相关论文
共 50 条
  • [31] A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models
    Mehmet Şirin Gündüz
    Gültekin Işık
    Journal of Real-Time Image Processing, 2023, 20
  • [32] Quantitative Analysis of Deep Learning-Based Object Detection Models
    Elgazzar, Khalid
    Mostafi, Sifatul
    Dennis, Reed
    Osman, Youssef
    IEEE ACCESS, 2024, 12 : 70025 - 70044
  • [33] Clothing Detection and Classification with Fine-Tuned YOLO-Based Models
    Nguyen, Hai T.
    Nguyen, Khanh K.
    Diem, Pham T-N
    Dien, Tran T.
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 127 - 132
  • [34] YOLO-Based Object Detection for Separate Collection of Recyclables and Capacity Monitoring of Trash Bins
    Wahyutama, Aria Bisma
    Hwang, Mintae
    ELECTRONICS, 2022, 11 (09)
  • [35] Integrating Retinex Theory for YOLO-Based Object Detection in Low-Illumination Environments
    Tao, Yixiong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT IX, 2025, 15209 : 301 - 311
  • [36] Deep Learning-Based YOLO Models for the Detection of People With Disabilities
    Alruwaili, Madallah
    Atta, Muhammad Nouman
    Siddiqi, Muhammad Hameed
    Khan, Abdullah
    Khan, Asfandyar
    Alhwaiti, Yousef
    Alanazi, Saad
    IEEE ACCESS, 2024, 12 : 2543 - 2566
  • [37] Automatic Meniscus Segmentation Using YOLO-Based Deep Learning Models with Ensemble Methods in Knee MRI Images
    Simsek, Mehmet Ali
    Sertbas, Ahmet
    Sasani, Hadi
    Dincel, Yasar Mahsut
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [38] YOLO deep learning algorithm for object detection in agriculture: a review
    Kanna, S. Kamalesh
    Kumaraperumal, R.
    Pazhanivelan, P.
    Jagadeeswaran, R.
    Prabu, P. C.
    JOURNAL OF AGRICULTURAL ENGINEERING, 2024, 55 (04)
  • [39] Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
    Al-masni, Mohammed A.
    Al-antari, Mugahed A.
    Park, Jeong-Min
    Gi, Geon
    Kim, Tae-Yeon
    Rivera, Patricio
    Valarezo, Edwin
    Choi, Mun-Taek
    Han, Seung-Moo
    Kim, Tae-Seong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 : 85 - 94
  • [40] Performance Evaluation of YOLO-Based Deep Learning Models for Real-Time Armour Unit Detection with Image Pre-processing Method
    Pratama, Firmansyah Putra
    Pratama, Alfan Rizaldy
    Sari, Dewi Mutiara
    Marta, Bayu Sandi
    Armono, R. Haryo Dwito
    2024 INTERNATIONAL ELECTRONICS SYMPOSIUM, IES 2024, 2024, : 541 - 546