Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection

被引:0
|
作者
U. Sirisha
S. Phani Praveen
Parvathaneni Naga Srinivasu
Paolo Barsocchi
Akash Kumar Bhoi
机构
[1] VIT-AP University,School of Computer Science and Engineering
[2] Prasad V Potluri Siddhartha Institute of Technology,Department of Computer Science and Engineering
[3] Sikkim Manipal University,Directorate of Research
[4] KIET Group of Institutions,Institute of Information Science and Technologies
[5] National Research Council,undefined
关键词
Object detection; YOLO; Darknet; Deep learning; Performance analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection is a critical and complex problem in computer vision, and deep neural networks have significantly enhanced their performance in the last decade. There are two primary types of object detectors: two stage and one stage. Two-stage detectors use a complex architecture to select regions for detection, while one-stage detectors can detect all potential regions in a single shot. When evaluating the effectiveness of an object detector, both detection accuracy and inference speed are essential considerations. Two-stage detectors usually outperform one-stage detectors in terms of detection accuracy. However, YOLO and its predecessor architectures have substantially improved detection accuracy. In some scenarios, the speed at which YOLO detectors produce inferences is more critical than detection accuracy. This study explores the performance metrics, regression formulations, and single-stage object detectors for YOLO detectors. Additionally, it briefly discusses various YOLO variations, including their design, performance, and use cases.
引用
收藏
相关论文
共 50 条
  • [1] Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection
    Sirisha, U.
    Praveen, S. Phani
    Srinivasu, Parvathaneni Naga
    Barsocchi, Paolo
    Bhoi, Akash Kumar
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [2] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [3] YOLO-Based Efficient Vehicle Object Detection
    Liu, Ting-Na
    Zhu, Zhong-Jie
    Bai, Yong-Qiang
    Liao, Guang-Long
    Chen, Yin-Xue
    Journal of Computers (Taiwan), 2022, 33 (04): : 69 - 79
  • [4] YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification
    Aldughayfiq, Bader
    Ashfaq, Farzeen
    Jhanjhi, N. Z.
    Humayun, Mamoona
    HEALTHCARE, 2023, 11 (09)
  • [5] Light-YOLO: A Lightweight and Efficient YOLO-Based Deep Learning Model for Mango Detection
    Zhong, Zhengyang
    Yun, Lijun
    Cheng, Feiyan
    Chen, Zaiqing
    Zhang, Chunjie
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [6] YOLO-Based Light-Weight Deep Learning Models for Insect Detection System with Field Adaption
    Kumar, Nithin
    Nagarathna
    Flammini, Francesco
    AGRICULTURE-BASEL, 2023, 13 (03):
  • [7] Driver Distracted Behavior Detection Technology with YOLO-Based Deep Learning Networks
    Poon, Yen-Sok
    Kao, Ching-Yun
    Wang, Yen-Kai
    Hsiao, Chih-Chin
    Hung, Ming-Yu
    Wang, Yu-Ching
    Fan, Chih-Peng
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [8] Driver Distracted Behavior Detection Technology with YOLO-Based Deep Learning Networks
    Poon, Yen-Sok
    Kao, Ching-Yun
    Wang, Yen-Kai
    Hsiao, Chih-Chin
    Hung, Ming-Yu
    Wang, Yu-Ching
    Fan, Chih-Peng
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [9] YOLO-Based Deep Learning Framework for Olive Fruit Fly Detection and Counting
    Mamdouh, Nariman
    Khattab, Ahmed
    IEEE ACCESS, 2021, 9 : 84252 - 84262
  • [10] A Review of YOLO Object Detection Based on Deep Learning
    Shao Yanhua
    Zhang Duo
    Chu Hongyu
    Zhang Xiaoqiang
    Rao Yunbo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3697 - 3708