(I)-envelopes of closed convex sets in Banach spaces

被引:0
作者
Ondřej F. K. Kalenda
机构
[1] Charles University,Faculty of Mathematics and Physics, Department of Mathematical Analysis
来源
Israel Journal of Mathematics | 2007年 / 162卷
关键词
Banach Space; Unit Ball; Compact Space; Borel Function; Complex Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study the notion of (I)-generating introduced by V. Fonf and J. Lindendstrauss and a related notion of (I)-envelope. As a consequence of our results we get an easy proof of the James characterization of weak* compactness in Banach spaces with weak angelic dual unit ball and an easy proof of the James characterization of reflexivity within a large class of spaces. We also show by an example that the general James theorem cannot be proved by this method.
引用
收藏
页码:157 / 181
页数:24
相关论文
共 12 条
  • [1] Argyros S.(1993)On weakly Lindelöf Banach spaces Rocky Mountain Journal of Mathematics 23 395-446
  • [2] Mercourakis S.(2004)A characterization of subspaces of weakly compactly generated Banach spaces Journal of the London Mathematical Society 69 457-464
  • [3] Fabian M.(2003)Boundaries and generation of convex sets Israel Journal of Mathematics 136 157-172
  • [4] Montesinos V.(2000)Valdivia compact spaces in topology and Banach space theory Extracta Mathematica 15 1-85
  • [5] Zizler V.(2003)On the class of continuous images of Valdivia compacta Extracta Mathematica 18 65-80
  • [6] Fonf V. P.(1997)The Grothendieck property in the space l Matematichnī Metodi ta Fīziko-Mekhanīchnī Polya 40 39-44
  • [7] Lindenstrauss J.(1972)(E) and the Banach-Saks p-property in c Pacific Journal of Mathematics 40 703-708
  • [8] Kalenda O.(1972)(E) Pacific Journal of Mathematics 40 709-718
  • [9] Kalenda O.(undefined)A convergence theorem with boundary undefined undefined undefined-undefined
  • [10] Kucher O. V.(undefined)Maximinimax, minimax, and antiminimax theorems and a result of R. C. James undefined undefined undefined-undefined