Singular Integral Operator in Spaces Defined by a Generalized Oscillation

被引:0
作者
R. M. Rzaev
L. R. Aliyeva
L. E. Huseinova
机构
[1] Azerbaijan State Pedagogic University,
[2] Institute of Mathematics and Mechanics,undefined
[3] Azerbaijan National Academy of Sciences,undefined
来源
Ukrainian Mathematical Journal | 2022年 / 73卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of a multidimensional singular integral operator in function spaces defined by the conditions imposed on the generalized oscillation of a function.
引用
收藏
页码:1428 / 1444
页数:16
相关论文
共 19 条
  • [1] Aliyeva LR(2011)Equivalent norms in spaces of mean oscillation Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 31 19-26
  • [2] Bari NK(1956)Best approximation and differential properties of two conjugate functions Tr. Mosk. Mat. Obshch. 5 483-552
  • [3] Stechkin SB(2005)On functions of integrable mean oscillation Rev. Mat. Complut. 18 465-477
  • [4] Blasco O(1963)Proprieta di hölderianita di alcune classi di funzioni Ann. Scuola Norm. Super. Pisa 17 175-188
  • [5] Perez MA(1984)Maximal functions measuring smoothness Mem. Amer. Math. Soc. 47 1-115
  • [6] Campanato S(1961)On functions of bounded mean oscillation Comm. Pure Appl. Math. 14 415-426
  • [7] Vore DR(1964)Mean oscillation over cubes and Hölder continuity Proc. Amer. Math. Soc. 15 717-721
  • [8] Sharpley R(1991)A multidimensional singular integral operator in spaces defined by conditions on the mean oscillation of functions Sov. Math. Dokl. 42 520-523
  • [9] John F(1997)A multidimensional singular integral operator in spaces defined by conditions on the Dokl. Akad. Nauk 356 602-604
  • [10] Nirenberg L(1999)th order mean oscillation Trans. Acad. Sci. Azerb. 19 118-124