Infinite wedge and random partitions

被引:33
作者
Okounkov A. [1 ]
机构
[1] Department of Mathematics, University of California at Berkeley, Evans Hall 3840, Berkeley
基金
美国国家科学基金会;
关键词
Random partitions; Schur measure;
D O I
10.1007/PL00001398
中图分类号
学科分类号
摘要
We use representation theory to obtain a number of exact results for random partitions. In particular, we prove a simple determinantal formula for correlation functions of what we call the Schur measure on partitions (which is a far reaching generalization of the Plancherel measure; see [3], [8]) and also observe that these correlations functions are τ-functions for the Toda lattice hierarchy. We also give a new proof of the formula due to Bloch and the author [5] for the so-called n-point functions of the uniform measure on partitions and comment on the local structure of a typical partition. ©Birkhäuser Verlag, 2001.
引用
收藏
页码:57 / 81
页数:24
相关论文
共 34 条
[1]  
Adler M., Van Moerbeke P., Integrals over classical groups, random permutations, Toda and Toeplitz lattices, Comm. Pure Appl. Math., 54, pp. 153-205, (2001)
[2]  
Aldous D., Diaconis P., Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. A MS, 36, pp. 413-432, (1999)
[3]  
Baik J., Deift P., Johansson K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., 12, pp. 1119-1178, (1999)
[4]  
Basor E., Widom H., On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory, 37, pp. 397-401, (2000)
[5]  
Bloch S., Okounkov A., The character of the infinite wedge representation, Adv. Math., 149, pp. 1-60, (2000)
[6]  
Bogolubov N., Shirkov D., Quantum Fields. Benjamin/Cummings Publ., (1983)
[7]  
Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory, 37, pp. 386-396, (2000)
[8]  
Borodin A., Okounkov A., Olshanski G., Asymptotics of the Plancherel measures for symmetric groups, J. Amer. Math. Soc., 13, pp. 481-515, (2000)
[9]  
Borodin A., Olshanski G., Point processes and the infinite symmetric group, Math. Res. Lett., 5, pp. 799-816, (1998)
[10]  
Borodin A., Olshanski G., Distribution on partitions, point processes, and the hypergeometric kernel, Comm. Math. Phys., 211, pp. 335-358, (2000)