Computational chemistry on quantum computersGround state estimation

被引:0
作者
V. Armaos
Dimitrios A. Badounas
Paraskevas Deligiannis
Konstantinos Lianos
机构
[1] PiDust,Laboratory of Atmospheric Physics, Department of Physics
[2] University of Patras,Department of Material Science
[3] University of Patras,Department of Computer Engineering and Informatics
[4] University of Patras,undefined
来源
Applied Physics A | 2020年 / 126卷
关键词
Quantum computing; Computational chemistry; VQE; UCCSD; NISQ;
D O I
暂无
中图分类号
学科分类号
摘要
We present computational chemistry data for small molecules (CO, HCl, F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, NH4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4^+$$\end{document}, CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}, NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}, H3O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3O^+$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_2}$$\end{document}O, BeH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}, LiH, OH-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document}, HF, HeH+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}), obtained by implementing the unitary coupled cluster method with single and double excitations (UCCSD) on a quantum computer simulator. We have used the variational quantum eigensolver (VQE) algorithm to extract the ground state energies of these molecules. This energy data represents the expected ground state energy that a quantum computer will produce for the given molecules, on the STO-3G basis. Since there is a lot of interest in the implementation of UCCSD on quantum computers, we hope that our work will serve as a benchmark for future experimental implementations.
引用
收藏
相关论文
共 139 条
[11]  
Maslov D(2018)Qubit coupled cluster method: a systematic approach to quantum chemistry on a quantum computers J Chem. Theor. Comput. 14 6317-226
[12]  
Nam Y(2014)From transistor to trapped-ion computers for quantum chemistry Sci. Rep. 4 3589-10915
[13]  
Kim J(2016)The theory of variational hybrid quantum-classical algorithms New J. Phys. 18 023023-246
[14]  
Aspuru-Guzik A(2019)Variational quantum simulation for quantum chemistry Adv. Theor. Simul. 2 1800182-undefined
[15]  
Dutoi AD(2002)Simulating physical phenomena by quantum networks Phys. Rev. A. 65 042323-undefined
[16]  
Love PJ(1928)Über das paulische äquivalenzverbot Z. Phys. 47 631-undefined
[17]  
Head-Gordon M(2012)The Bravyi-Kitaev transformation for quantum computation of electronic structure J Chem. Phys. 137 224109-undefined
[18]  
Cody Jones N(2002)Fermionic quantum computation Ann. Phys. 298 210-undefined
[19]  
Whitfield JD(2020)Quantum computational chemistry Rev. Mod. Phys. 92 015003-undefined
[20]  
McMahon PL(2019)Quantum chemistry in the age of quantum computing Chem. Rev. 119 10856-undefined