Computational chemistry on quantum computersGround state estimation

被引:0
作者
V. Armaos
Dimitrios A. Badounas
Paraskevas Deligiannis
Konstantinos Lianos
机构
[1] PiDust,Laboratory of Atmospheric Physics, Department of Physics
[2] University of Patras,Department of Material Science
[3] University of Patras,Department of Computer Engineering and Informatics
[4] University of Patras,undefined
来源
Applied Physics A | 2020年 / 126卷
关键词
Quantum computing; Computational chemistry; VQE; UCCSD; NISQ;
D O I
暂无
中图分类号
学科分类号
摘要
We present computational chemistry data for small molecules (CO, HCl, F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, NH4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4^+$$\end{document}, CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}, NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}, H3O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3O^+$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_2}$$\end{document}O, BeH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}, LiH, OH-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document}, HF, HeH+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}), obtained by implementing the unitary coupled cluster method with single and double excitations (UCCSD) on a quantum computer simulator. We have used the variational quantum eigensolver (VQE) algorithm to extract the ground state energies of these molecules. This energy data represents the expected ground state energy that a quantum computer will produce for the given molecules, on the STO-3G basis. Since there is a lot of interest in the implementation of UCCSD on quantum computers, we hope that our work will serve as a benchmark for future experimental implementations.
引用
收藏
相关论文
共 139 条
[1]  
Feynman RP(1986)Quantum mechanical computers Found. Phys. 16 507-531
[2]  
Sugisaki K(2019)Quantum chemistry on quantum computers: a method for preparation of multiconfigurational wave functions on quantum computers without performing post-Hartree–Fock calculations ACS Cent. Sci. 5 167-175
[3]  
Nakazawa S(2014)Quantum simulation Rev. Mod. Phys. 86 153-185
[4]  
Toyota K(2019)An outlook for quantum computing [point of view] Proc. IEEE. 107 5-10
[5]  
Sato K(2005)Simulated quantum computation of molecular energies Science. 309 1704-1707
[6]  
Shiomi D(2012)Faster quantum chemistry simulation on fault-tolerant quantum computers New J. Phys. 14 115023-21
[7]  
Takui T(2015)Improving quantum algorithms for quantum chemistry Quantum Inf. Comput. 15 1-2082
[8]  
Georgescu IM(2019)Quantum computing methods for electronic states of the water molecule Mol. Phys. 117 2069-324
[9]  
Ashhab S(2018)Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz Q Sci. Technol. 4 014008-6326
[10]  
Nori F(2019)Generalized unitary coupled cluster wave functions for quantum computation J Chem. Theor. Comput. 15 311-651