On the R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-boundedness of stochastic convolution operators

被引:0
作者
Jan van Neerven
Mark Veraar
Lutz Weis
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
[2] Karlsruhe Institute of Technology (KIT),Department of Mathematics
关键词
Stochastic convolutions; Maximal regularity; -boundedness; Hardy–Littlewood maximal function; UMD Banach function spaces; Primary 60H15; Secondary 42B25; 46B09; 46E30; 60H05;
D O I
10.1007/s11117-014-0302-8
中图分类号
学科分类号
摘要
The R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-boundedness of certain families of vector-valued stochastic convolution operators with scalar-valued square integrable kernels is the key ingredient in the recent proof of stochastic maximal Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-regularity, 2<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\infty $$\end{document}, for certain classes of sectorial operators acting on spaces X=Lq(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=L^q(\mu )$$\end{document}, 2≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le q<\infty $$\end{document}. This paper presents a systematic study of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-boundedness of such families. Our main result generalises the afore-mentioned R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-boundedness result to a larger class of Banach lattices X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and relates it to the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{1}$$\end{document}-boundedness of an associated class of deterministic convolution operators. We also establish an intimate relationship between the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{1}$$\end{document}-boundedness of these operators and the boundedness of the X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}-valued maximal function. This analysis leads, quite surprisingly, to an example showing that R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-boundedness of stochastic convolution operators fails in certain UMD Banach lattices with type 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 33 条
  • [1] Bourgain J(1984)Extension of a result of Benedek Calderón and Panzone. Ark. Mat. 22 91-95
  • [2] Brzeźniak Z(1995)Stochastic partial differential equations in M-type Potential Anal. 4 1-45
  • [3] Brzeźniak Z(1997) Banach spaces Stoch Stoch Rep. 61 245-295
  • [4] Dodds PG(1997)On stochastic convolution in Banach spaces and applications Integral Equ. Oper Theory 29 269-287
  • [5] Sukochev FA(1993)RUC-decompositions in symmetric operator spaces Israel J. Math. 83 177-201
  • [6] García-Cuerva J(1995)The Hardy-Littlewood property of Banach lattices Illinois J. Math. 39 556-566
  • [7] Macías RA(2009)-Regularity of the Cauchy problem and the geometry of Banach spaces J. Funct. Anal. 257 2410-2475
  • [8] Torrea JL(2007)Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces Ann. Probab. 35 1438-1478
  • [9] Guerre-Delabrière S(2012)Stochastic integration in UMD Banach spaces SIAM J. Math. Anal. 44 1372-1414
  • [10] Maas J(2012)Maximal Ann. Probab. 40 788-812