Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner–von Neumann potential

被引:0
作者
Sergey Simonov
机构
[1] St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences,
来源
Mathematische Zeitschrift | 2016年 / 284卷
关键词
Schrödinger operator; Titchmarsh–Weyl theory; Wigner–von Neumann potential; Spectral density; Multiple scale method; 47E05; 34B20; 34L40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger operator Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\alpha }$$\end{document} on the half-line with a periodic background potential and a perturbation which consists of two parts: a summable potential and the slowly decaying Wigner–von Neumann potential csin(2ωx+δ)xγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{c\sin (2\omega x+\delta )}{x^{\gamma }}$$\end{document}, where γ∈(12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (\frac{1}{2},1)$$\end{document}. The continuous spectrum of this operator has the same band-gap structure as the continuous spectrum of the unperturbed periodic operator. In every band there exist two points, called critical, where the eigenfunction equation has square summable solutions. Every critical point νcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{cr}$$\end{document} is an eigenvalue of the operator Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\alpha }$$\end{document} for some value of the boundary parameter α=αcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\alpha _{cr}$$\end{document}, specific to that particular point. We prove that for α≠αcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ne \alpha _{cr}$$\end{document} the spectral density of the operator Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\alpha }$$\end{document} has a zero of the exponential type at νcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{cr}$$\end{document}.
引用
收藏
页码:335 / 411
页数:76
相关论文
共 51 条
[1]  
Behncke H(1991)Absolute continuity of Hamiltonians with von Neumann–Wigner potentials I Proc. Am. Math. Soc. 111 373-384
[2]  
Behncke H(1991)Absolute continuity of Hamiltonians with von Neumann–Wigner potentials II Manuscr. Math. 71 163-181
[3]  
Behncke H(1994)The m-function for Hamiltonians with Wigner–von Neumann potentials J. Math. Phys. 35 1445-1462
[4]  
Buslaev VS(1970)Wave operators for the Schrödinger equation with a slowly decreasing potential Theoret. Math. Phys. 2 266-274
[5]  
Matveev VB(1974)Coordinate asymptotic behavior of the solution of the scattering problem for the Schrödinger equation Theoret. Math. Phys. 19 465-476
[6]  
Buslaev VS(1992)Observation of an electronic bound state above a potential well Nature 358 565-567
[7]  
Skriganov MM(2002)Perturbations of the Wigner–von Neumann potential leaving the embedded eigenvalue fixed Ann. Henri Poincaré 3 331-345
[8]  
Capasso F(2006)Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics Invent. Math. 165 1-50
[9]  
Sirtori C(1987)On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators J. Math. Anal. Appl. 128 30-56
[10]  
Faist J(1975)Asymptotic integration of adiabatic oscillators J. Math. Anal. Appl. 51 76-93