The multi-stripe travelling salesman problem

被引:0
作者
Eranda Çela
Vladimir G. Deineko
Gerhard J. Woeginger
机构
[1] TU Graz,Institut für Diskrete Mathematik
[2] The University of Warwick,Warwick Business School
[3] Lehrstuhl für Informatik 1,undefined
[4] RWTH Aachen,undefined
来源
Annals of Operations Research | 2017年 / 259卷
关键词
Combinatorial optimization; Computational complexity; Travelling salesman problem; Quadratic assignment problem; Tractable special case; Kalmanson conditions;
D O I
暂无
中图分类号
学科分类号
摘要
In the classical Travelling Salesman Problem (TSP), the objective function sums the costs for travelling from one city to the next city along the tour. In the q-stripe TSP with q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document}, the objective function sums the costs for travelling from one city to each of the next q cities in the tour. The resulting q-stripe TSP generalizes the TSP and forms a special case of the quadratic assignment problem. We analyze the computational complexity of the q-stripe TSP for various classes of specially structured distance matrices. We derive NP-hardness results as well as polynomially solvable cases. One of our main results generalizes a well-known theorem of Kalmanson from the classical TSP to the q-stripe TSP.
引用
收藏
页码:21 / 34
页数:13
相关论文
共 57 条
[1]  
Arnborg S(1991)Easy problems for tree-decomposable graphs Journal of Algorithms 12 308-340
[2]  
Lagergren J(1999)New classes of efficiently solvable generalized traveling salesman problems Annals of Operations Research 86 529-558
[3]  
Seese D(1992)A canonical decomposition theory for metrics of a finite set Advances in Mathematics 92 47-105
[4]  
Balas E(1981)The edge Hamiltonian path problem is NP-complete Information Processing Letters 13 157-159
[5]  
Bandelt HJ(1988)Some classes of graphs with bounded treewidth Bulletin of the EATCS 36 116-126
[6]  
Dress AWM(1993)A tourist guide through treewidth Acta Cybernetica 11 1-21
[7]  
Bertossi AA(1998)A partial k-arboretum of graphs with bounded treewidth Theoretical Computer Science 209 1-45
[8]  
Bodlaender HL(1998)The quadratic assignment problem with a monotone anti-Monge and a symmetric Toeplitz matrix: Easy and hard cases Mathematical Programming B82 125-158
[9]  
Bodlaender HL(1998)Well-solvable special cases of the TSP: A survey SIAM Reviews 40 496-546
[10]  
Bodlaender HL(1996)Perspectives of Monge properties in optimization Discrete Applied Mathematics 70 95-161