The Octonionic Bergman Kernel for the Half Space

被引:0
作者
Jinxun Wang
Xingmin Li
机构
[1] Guangdong University of Foreign Studies,School of Mathematics and Statistics
[2] South China Normal University,School of Computer Sciences
来源
Advances in Applied Clifford Algebras | 2020年 / 30卷
关键词
Octonions; Octonionic analysis; Bergman kernel; Primary 30G35; Secondary 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the octonionic Bergman kernel for half space in the octonionic analysis setting by two different methods. As a consequence, we unify the kernel forms in both complex analysis and hyper-complex analysis.
引用
收藏
相关论文
共 29 条
[1]  
Baez JC(2002)The octonions Bull. Amer. Math. Soc. 39 145-205
[2]  
Dentoni P(1973)Funzioni regolari nell’algebra di Cayley Rend. Sem. Mat. Univ. Padova. 50 251-267
[3]  
Sce M(1898)Über die composition der quadratischen Formen von beliebig vielen variablen Nachr. Ges. Wiss. Göttingen 1898 309-316
[4]  
Hurwitz A(2000)On Stein-Weiss conjugate harmonic function and octonion analytic function Approx. Theory & its Appl. 16 28-36
[5]  
Li X(2002)The Cauchy integral formulas on the octonions Bull. Belg. Math. Soc. 9 47-64
[6]  
Peng L(2014)Orthogonal invariance of the Dirac operator and the critical index of subharmonicity for octonionic analytic functions Adv. Appl. Clifford Algebras 24 141-149
[7]  
Li X(2001)The Laurent series on the octonions Adv. Appl. Clifford Algebras 11 205-217
[8]  
Peng L(2005)Characterization of octonionic analytic functions Complex Variables 50 1031-1040
[9]  
Li X(2008)Cauchy integrals on Lipschitz surfaces in octonionic spaces J. Math. Anal. Appl. 343 763-777
[10]  
Wang J(2009)The Paley-Wiener theorem in the non-commutative and non-associative octonions Sci. China Ser. A 52 129-141