Geometric programming technique to optimize power distribution system

被引:0
作者
R. R. Ota
J. C. Pati
A. K. Ojha
机构
[1] Institute of Technical Education and Research,
[2] C.V. Raman College of Engineering,undefined
[3] IIT Bhubaneswar,undefined
来源
OPSEARCH | 2019年 / 56卷
关键词
Geometric programming; Duality; -Constraint method; Weighted method; Pareto solution; Radius of power supply; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Geometric programming is an important tool for solving certain optimization problems. In this paper, multi objective geometric programming with ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-constraint method is used to find the maximum radius of a circular power supply substation to supply power in a particular region. The main aim of the proposed method is to formulate a mathematical model for the efficient distribution of the power supply to maximum area from a circular substation with least investment and minimum waste. The proposed multi-objective optimization model has been solved to generate Pareto optimal solutions using weighted sum method. The results so obtained have been compared with that of ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-constraint method by considering suitable numerical examples.
引用
收藏
页码:282 / 299
页数:17
相关论文
共 27 条
  • [1] Chinwuko CE(2012)Modeling and optimization of electricity distribution planning system using dynamic programming techniques: a case of power holding company of Nigeria (PHCN) Int. J. Multidiscip. Sci. Eng. 3 39-46
  • [2] Chukwuneke JL(2009)Power distribution planning using multi-criteria decision making method Int. J. Comput. Electr. Eng. 1 596-139
  • [3] Okolie PC(2006)Power supply radius optimized with fuzzy geometric program in substation Fuzzy Optim. Decis. Mak. 5 123-596
  • [4] Dara EJ(1979)Power system long-range decision analysis under fuzzy environment IEEE Trans. Power Appar. 2 585-519
  • [5] Chakravorty S(1987)Optimal multi-stage planning of power distribution systems IEEE Trans. Power Deliv. 2 512-136
  • [6] Ghosh S(1982)Mathematical dynamic optimization model for electrical distribution system planning Electr. Power Energy Syst. 4 129-297
  • [7] Cao Bing-Yuan(1971)On a Bacterion formulation of problems integrated System identification and system optimization IEEE Trans. Syst. Man Cybern. 1 296-41
  • [8] Dhar SB(2010)Design and operation of the locational marginal pricesbased electricity markets IET Gener. Transm. Distrib. 4 315323-758
  • [9] Gonen T(1986)Mathematical dynamic model for long-term distribution system planning IEEE Trans. Power Syst. 1 34-153
  • [10] Ramrez-Rosado IJ(2014)Multi-objective geometric programming problem with Appl. Math. Model. 38 747-109