On the Stochastic Wave Equation with Nonlinear Damping

被引:0
作者
Jong Uhn Kim
机构
[1] Virginia Tech,Department of Mathematics
来源
Applied Mathematics and Optimization | 2008年 / 58卷
关键词
Wave equation; Nonlinear damping; Initial boundary value problem; Brownian motion; Invariant measure;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping.
引用
收藏
页码:29 / 67
页数:38
相关论文
共 25 条
[1]  
Arrietta J.(1992)A damped hyperbolic equation with critical exponents Commun. Partial Differ. Equ. 17 841-866
[2]  
Carvalho A.N.(2002)The stochastic nonlinear damped wave equation Appl. Math. Optim. 46 125-141
[3]  
Hale J.(2005)On nonlinear wave equations with degenerate damping and source terms Trans. Am. Math. Soc. 357 2571-2611
[4]  
Barbu V.(2002)Stochastic wave equations with polynomial nonlinearity Ann. Appl. Probab. 12 361-381
[5]  
Da Prato G.(2002)On the attractors for a semilinear wave equation with critical exponent and nonlinear boundary dissipation Commum. Partial Differ. Equ. 27 1901-1951
[6]  
Barbu V.(1997)Random attractors J. Dyn. Differ. Equ. 9 307-341
[7]  
Lasiecka I.(1995)Global attractors for damped wave equations with supercritical exponent J. Differ. Equ. 116 431-447
[8]  
Rammaha M.(2004)Periodic and invariant measures for stochastic wave equations Electron. J. Differ. Equ. 5 30-1703
[9]  
Chow P.L.(2005)Invariant measures for the stochastic von Karman plate equation SIAM J. Math. Anal. 36 1689-113
[10]  
Chueshov I.(1937)La théorie générale de la mesure dans son application à l’étude des systémes de la Mécanique non linéaire Ann. Math. 38 65-96